Research Article

Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses

Table 1

Bayesian estimates for case i in the first simulation study.

ParameterTrueMeanMedian5%95%SDRMSE

(i) Empirical Bayesian scenario
3.02.9972.9912.7873.1470.1040.104
1.51.4761.4731.2821.6440.1130.112
0.00.0100.001−0.1120.1300.0670.067
0.00.001−0.000−0.0900.0970.0620.062
2.01.9921.9811.8362.1800.1110.111
0.00.0070.000−0.1110.0930.0690.069
0.00.001−0.000−0.1060.0100.0630.062
0.0−0.0070.000−0.1340.0450.0500.050
1.00.9990.9980.8871.0890.0640.063
−1.0−1.091−1.102−1.348−0.8260.1690.191
0.30.3680.3530.1130.6310.1610.174
0.30.2650.244−0.5200.9580.4560.456
0.30.3370.327−0.3290.9220.3610.361
0.30.3620.377−0.1220.7680.2740.280
0.30.3290.294−0.1930.8110.3020.302
0.30.3170.269−0.2560.8330.3380.338
0.30.3620.373−0.2520.9010.3050.310
0.30.3400.316−0.1670.8030.2940.295
0.30.3450.342−0.0980.7490.2720.274

(ii) Hierarchical model scenario
3.03.0052.9872.8293.1490.1110.110
1.51.5001.5111.3191.6460.1130.113
0.00.0070.001−0.0590.0660.0470.048
0.0−0.0040.001−0.1190.0670.0690.069
2.02.0031.9961.8342.1570.0100.099
0.0−0.005−0.002−0.0750.0580.0410.041
0.0−0.003−0.004−0.0770.0610.0400.039
0.0−0.003−0.003−0.0490.0390.0320.032
1.01.0191.0200.9081.1080.0630.066
−1.0−1.091−1.102−1.358−0.8530.1610.184
0.30.3570.3570.0530.6100.1590.168
0.30.2880.257−0.6300.9460.4580.456
0.30.2810.266−0.2240.9170.3470.346
0.30.3840.360−0.1840.8510.3060.316
0.30.3600.337−0.2120.7800.2960.301
0.30.2990.348−0.3630.7770.3320.330
0.30.3280.308−0.2050.7820.2860.286
0.30.3840.417−0.1260.7990.2840.295
0.30.2990.311−0.0870.6440.2240.223