Research Article

Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses

Table 2

Bayesian estimates for case ii in the first simulation study.

ParameterTrueMeanMedian5%95%SDRMSE

(i) Empirical Bayesian scenario
1.01.0141.0230.8151.1630.0990.100
1.00.9940.9970.7831.1850.1290.128
1.00.9830.9740.7881.1570.1090.110
1.01.0151.0200.8191.1800.1150.116
1.01.0041.0130.8361.1560.1050.105
1.00.9920.9860.7881.1640.1140.113
1.00.9910.9790.8111.1750.1160.115
1.00.9890.9830.8291.1250.0960.096
1.01.0101.0060.9151.1310.0650.065
−1.0−1.092−1.083−1.395−0.8410.1720.195
0.30.3510.345−0.0450.6920.2270.231
0.30.3170.304−0.1630.7650.3170.316
0.30.3310.278−0.1850.9190.3340.334
0.30.3710.365−0.1730.8920.3380.344
0.30.3100.286−0.3750.9960.3880.387
0.30.3320.302−0.2200.8310.3380.338
0.30.3160.309−0.2500.8690.3620.361
0.30.3630.329−0.3100.9040.3940.397
0.30.3180.286−0.2090.7470.3270.326

(ii) Hierarchical model scenario
1.00.9991.0000.8161.1630.1120.112
1.00.9790.9630.7981.1920.1240.125
1.01.0170.9990.8421.2240.1250.125
1.01.0010.9820.7861.2240.1290.128
1.00.9871.0040.7671.1430.1220.122
1.00.9900.9730.7611.2370.1390.139
1.00.9930.9910.8141.1650.1140.114
1.00.9961.0020.8071.1650.1110.110
1.01.0191.0210.9151.1290.0670.069
−1.0−1.087−1.094−1.356−0.8430.1670.188
0.30.3750.3430.0510.7120.2090.221
0.30.3610.389−0.1680.7390.2950.300
0.30.3250.340−04820.8490.3870.386
0.30.3250.360−0.2870.7880.3320.332
0.30.3230.334−0.3040.9030.3860.385
0.30.2920.279−0.3420.8470.3600.359
0.30.2950.282−0.2770.9030.3490.347
0.30.3400.356−0.2560.8540.3520.353
0.30.3110.302−0.2400.7800.3060.304