Research Article

Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses

Table 5

Bayesian estimates for case i in the second simulation study.

ParameterTrueMeanMedian5%95%SDRMSE

(i) Empirical Bayesian scenario
3.02.9882.9972.8463.0960.0830.083
1.51.4821.4731.3281.6380.0890.091
0.0−0.005−0.001−0.0980.1180.0510.051
0.00.0060.000−0.1080.0950.0630.063
2.01.9921.9921.8582.1240.0920.092
0.0−0.008−0.001−0.1580.0560.0640.064
0.0−0.001−0.000−0.0950.0790.0560.055
0.00.0020.000−0.0980.1180.0510.051
1.00.9890.9860.9141.0790.0580.058
−2.5−2.564−2.567−2.689−2.4520.0720.096
0.30.3390.3450.1040.5250.1350.140
0.30.2820.261−0.3950.8500.4130.411
0.30.2740.258−0.2610.8010.3550.354
0.30.3000.287−0.2050.7100.2840.282
0.30.3310.329−0.0680.7310.2660.267
0.30.2830.279−0.2690.7620.3270.326
0.30.2930.294−0.2550.6980.3040.302
0.30.2910.311−0.1960.7390.2820.281
0.30.3870.337−0.0150.8530.2860.298

(ii) Hierarchical model scenario
3.02.9842.9832.8223.1290.1010.102
1.51.5061.5101.3451.6540.1010.101
0.00.0080.007−0.0670.0890.0470.047
0.0−0.009−0.006−0.0820.0410.0430.043
2.01.9911.9761.8482.1390.1010.101
0.0−0.0010.003−0.0800.0480.0420.042
0.00.001−0.000−0.0750.0770.0460.046
0.00.0070.004−0.0540.0640.0410.042
1.00.9980.9950.9211.0860.0550.054
−2.5−2.573−2.576−2.681−2.4700.0700.101
0.30.3270.3150.1330.5010.1190.121
0.30.2870.276−0.3400.7560.3340.333
0.30.2680.282−0.2600.7100.3200.320
0.30.3420.314−0.1260.8340.2930.294
0.30.3070.321−0.2070.7970.3080.307
0.30.2500.221−0.2510.7350.2810.284
0.30.3400.354−0.1250.7120.2830.285
0.30.3230.286−0.1870.8470.3360.335
0.30.2970.311−0.1850.7070.2810.279