Research Article

Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses

Table 7

Bayesian estimates for type ii in the example 3.

ParameterTrueMeanMedian5%95%SDRMSE

(i) Empirical Bayesian scenario
3.02.9702.9762.7453.1180.1100.113
1.51.4881.4771.3241.6390.1090.110
0.0−0.003−0.001−0.1290.0840.0670.066
0.00.008−0.000−0.0390.0860.0560.057
2.01.9681.9741.7932.1000.0940.099
0.00.0040.000−0.0830.0740.1100.113
0.00.003−0.000−0.0810.0870.0500.050
0.00.0050.000−0.0840.0950.0490.049
1.01.0010.9960.8941.1060.0640.064
−0.622−0.613−0.888−0.3780.160
−0.052−0.057−0.3170.1680.151
0.1990.194−0.6020.8940.476
0.1090.103−0.4120.5980.314
−0.013−0.022−0.3830.3110.223
−0.012−0.001−0.3900.3040.217
0.1070.098−0.4930.6460.335
0.0150.026−0.3330.2650.120
0.006−0.010−0.3810.3370.215
0.0240.013−0.2860.3640.204

(ii) Hierarchical model scenario
3.02.9742.9692.8163.1070.0950.098
1.51.4791.4861.2611.6560.1230.124
0.00.0040.000−0.0660.0700.0470.047
0.00.0070.001−0.0660.0990.0560.056
2.01.9731.9681.8062.1180.1010.104
0.00.0080.003−0.0680.0980.0540.055
0.00.0090.004−0.0510.0470.0490.050
0.0−0.003−0.003−0.0690.0400.0490.049
1.01.0141.0110.9031.1150.0660.068
−0.606−0.603−0.842−0.3740.152
−0.054−0.078−0.3610.1680.152
0.1680.135−0.5520.8630.459
0.0970.075−0.4290.6010.306
0.0120.037−0.3420.2960.207
−0.006−0.029−0.3160.2320.176
0.1350.157−0.5220.6970.344
−0.037−0.049−0.3750.2990.200
0.0500.050−0.3480.3930.234
−0.0330.029−0.3970.2670.202