Research Article

Regularized Least Squares Recursive Algorithm with Forgetting Factor for Identifying Parameters in the Grinding Process

Table 4

Identification results of 10 experiments.

Parameters

Truth value−1.511.51
RLSRAFF−1.50090.99891.49850.9958
RLSM [31]−1.49650.99841.48741.0582
LSM [30]−1.50391.00441.58520.8855
LSRAFF [30]−1.49800.99381.48120.9872
Truth value−1.00.83.04.0
RLSRAFF-0.99630.79962.99213.9940
RLSM [31]−1.01910.80232.93653.8294
LSM [30]−1.10400.81433.10933.7783
LSRAFF [30]−1.00480.80543.04744.0382
Truth value−0.90.32.03.0
RLSRAFF−0.90370.30172.01702.9730
RLSM [31]−0.90580.31752.02992.9587
LSM [30]−0.93060.32331.94543.1175
LSRAFF [30]−0.92570.30961.97083.0338
Truth value−0.50.14.010.0
RLSRAFF−0.49890.10083.99819.9925
RLSM [31]−0.51280.09593.93819.9606
LSM [30]−0.47900.09453.85419.9446
LSRAFF [30]−0.48850.09484.109010.0459
Truth value−0.10.410.07.0
RLSRAFF−0.10210.40209.92496.9556
RLSM [31]−0.08570.36949.88606.9263
LSM [30]−0.07980.407710.02637.0824
LSRAFF [30]−0.10770.39799.89646.8515
Truth value−0.81.0−2.06.0
RLSRAFF−0.80150.0010−2.01045.9948
RLSM [31]−0.80130.9965−1.81125.9769
LSM [30]−0.80221.0106−1.97786.1568
LSRAFF [30]−0.80201.0003−1.98515.9752
Truth value−0.70.42.0−3.0
RLSRAFF−0.70110.40162.0014−2.9984
RLSM [31]−0.71570.38971.9152−2.9785
LSM [30]−0.67050.36681.8951−3.0987
LSRAFF [30]−0.73810.38992.1158−2.9857
Truth value−0.6−0.2−4.0−3.0
RLSRAFF−0.6060−0.1988−4.0408−3.0135
RLSM [31]−0.6247−0.1962−3.9870−2.9425
LSM [30]-0.6309-0.1755-4.0537−2.8846
LSRAFF [30]−0.5882−0.2156−3.9819−2.9502
Truth value0.30.48.05.5
RLSRAFF0.30040.40067.99875.4976
RLSM [31]0.29210.39827.97625.5475
LSM [30]0.28340.38777.89145.3927
LSRAFF [30]0.28950.39898.02395.4837
Truth value0.3−0.5−3.01.0
RLSRAFF0.2935−0.4956−3.01480.9929
RLSM [31]0.3283−0.4890−2.97720.9802
LSM [30]0.2553−0.5161−2.89331.0424
LSRAFF [30]0.2621−0.5128−3.01511.0201