Research Article

Mixed Variational Inequality Problem Involving Generalized Yosida Approximation Operator in q-Uniformly Smooth Banach Space

Table 1

Computational results for different initial values x0 = 1, x0 = −2, and x0 = 3.

No. of iterationFor For For

n = 11.000 0−2.000 03.000 0
n = 20.568 939 393 939 394−0.930 853 994 490 3581.568 801 652 892 56
n = 30.353 438 778 278 654−0.396 354 624 380 5450.853 301 046 718 120
n = 40.245 703 312 088 482−0.129 141 750 577 0230.495 600 020 532 151
n = 50.191 842 998 791 3420.004 446 283 234 2550.316 774 142 496 067
n = 60.164 916 551 530 7410.071 231 099 862 084 10.227 373 519 309 845
n = 70.151 455 182 338 9560.104 618 908 670 7210.182 679 364 784 447
n = 80.144 725 424 834 6060.121 310 513 639 1710.160 335 365 631 563
n = 90.141 361 009 564 3530.129 655 166 563 8250.149 164 904 898 038
n = 100.139 679 033 638 2670.133 826 918 325 5380.143 580 443 846 753
n = 120.138 417 783 362 8500.136 955 157 545 1550.139 392 867 241 313
n = 140.138 102 557 650 9800.137 737 001 921 4240.138 346 261 470 683
n = 160.138 023 772 931 2770.137 932 409 173 1680.138 084 682 103 349
n = 180.138 004 082 176 9220.137 981 247 529 2320.138 019 305 275 383
n = 200.137 999 160 844 3530.137 993 453 754 9560.138 002 965 570 617
n = 250.137 997 572 212 3880.137 997 393 988 6390.137 997 691 028 221
n = 300.137 997 522 601 8200.137 997 517 036 1630.137 997 526 312 259