Research Article
Uncertainty Measurement and Attribute Reduction Algorithm Based on Kernel Similarity Rough Set Model
Table 3
Comparison of SVM classification accuracy of attribute reduction results
| Data sets | Original data | The comparison Algorithm 1 | The comparison Algorithm 2 | The comparison Algorithm 3 | The algorithm proposed in this paper |
| wine | 0.9250 ± 0.0027 | 0.9493 ± 0.0064 | 0.9526 ± 0.0057 | 0.9372 ± 0.0027 | 0.9657 ± 0.0019 | sonar | 0.8066 ± 0.0090 | 0.8550 ± 0.0172 | 0.8425 ± 0.0145 | 0.8237 ± 0.0126 | 0.8564 ± 0.0132 | iono | 0.8109 ± 0.0043 | 0.8432 ± 0.0043 | 0.8521 ± 0.0048 | 0.8329 ± 0.0062 | 0.8570 ± 0.0057 | wdbc | 0.9251 ± 0.0022 | 0.9572 ± 0.0029 | 0.9735 ± 0.0045 | 0.9356 ± 0.0018 | 0.9697 ± 0.0023 | biodeg | 0.8250 ± 0.0027 | 0.8383 ± 0.0049 | 0.8551 ± 0.0033 | 0.8290 ± 0.0027 | 0.8478 ± 0.0036 | messidor | 0.8458 ± 0.0061 | 0.8557 ± 0.0067 | 0.8608 ± 0.0058 | 0.8593 ± 0.0069 | 0.8713 ± 0.0062 | winequality-red | 0.7671 ± 0.0074 | 0.8129 ± 0.0081 | 0.7864 ± 0.0062 | 0.7781 ± 0.0058 | 0.7932 ± 0.0051 | winequality-white | 0.7484 ± 0.0017 | 0.8364 ± 0.0077 | 0.8242 ± 0.0042 | 0.7992 ± 0.0065 | 0.8425 ± 0.0047 | magic | 0.8266 ± 0.0011 | 0.8596 ± 0.0023 | 0.8691 ± 0.0031 | 0.8431 ± 0.0026 | 0.8793 ± 0.0018 | average | 0.8311 ± 0.0041 | 0.8675 ± 0.0067 | 0.8684 ± 0.0057 | 0.8486 ± 0.0053 | 0.8758 ± 0.0049 |
|
|
The best experimental results are highlighted in bold.
|