Research Article
Uncertainty Measurement and Attribute Reduction Algorithm Based on Kernel Similarity Rough Set Model
Table 4
Comparison of kNN classification accuracy of attribute reduction results.
| Data sets | Original data | The comparison Algorithm 1 | The comparison Algorithm 2 | The comparison Algorithm 3 | The algorithm proposed in this paper |
| wine | 0.9011 ± 0.0170 | 0.9321 ± 0.0087 | 0.9493 ± 0.0047 | 0.9254 ± 0.0068 | 0.9551 ± 0.0053 | sonar | 0.8164 ± 0.0191 | 0.8437 ± 0.0187 | 0.8608 ± 0.0175 | 0.8237 ± 0.0163 | 0.8498 ± 0.0139 | iono | 0.8493 ± 0.0062 | 0.8988 ± 0.0068 | 0.9183 ± 0.0049 | 0.8841 ± 0.0059 | 0.9268 ± 0.0048 | wdbc | 0.9378 ± 0.0046 | 0.9468 ± 0.0062 | 0.9560 ± 0.0057 | 0.9424 ± 0.0039 | 0.9698 ± 0.0031 | biodeg | 0.8250 ± 0.0058 | 0.8328 ± 0.0046 | 0.8273 ± 0.0051 | 0.8257 ± 0.0038 | 0.8378 ± 0.0040 | messidor | 0.8273 ± 0.0044 | 0.8562 ± 0.0042 | 0.8476 ± 0.0049 | 0.8455 ± 0.0057 | 0.8693 ± 0.0050 | winequality-red | 0.7563 ± 0.0082 | 0.8015 ± 0.0074 | 0.7962 ± 0.0069 | 0.7760 ± 0.0056 | 0.7927 ± 0.0053 | winequality-white | 0.7598 ± 0.0039 | 0.8019 ± 0.0033 | 0.8250 ± 0.0045 | 0.7828 ± 0.0048 | 0.8056 ± 0.0042 | magic | 0.8019 ± 0.0022 | 0.8278 ± 0.0017 | 0.8352 ± 0.0036 | 0.8159 ± 0.0033 | 0.8434 ± 0.0029 | average | 0.8305 ± 0.0079 | 0.8601 ± 0.0067 | 0.8684 ± 0.0064 | 0.8468 ± 0.0062 | 0.8790 ± 0.0053 |
|
|
The best experimental results are highlighted in bold.
|