Research Article
On Fractional Newton-Type Method for Nonlinear Problems
Table 4
First-order NR and second-order NR results for
with Riemann–Liouville derivative and initial estimation
.
| | | | | | |
| N-R | 1 | 0.00000000 | 0.00000e + 00 | 0.00000e + 00 | 5 | N-R | 1 | 0.00000000 | 6.66798e − 10 | 0.00000e + 00 | 3 | N-R | 0.98 | −0.00000000 | 2.42649e − 09 | 1.64532e − 10 | 8 | N-R | 0.98 | −0.00000000 | 9.29969e − 10 | 5.95854e − 11 | 8 | N-R | 0.96 | −0.00000000 | 3.91885e − 09 | 5.46557e − 10 | 10 | N-R | 0.96 | −0.00000000 | 2.40538e − 09 | 3.14007e − 10 | 10 | N-R | 0.94 | −0.00000000 | 5.70944e − 09 | 1.22846e − 09 | 12 | N-R | 0.94 | −0.00000000 | 4.82173e − 09 | 9.60702e − 10 | 12 | N-R | 0.92 | −0.00000000 | 2.76674e − 09 | 8.16363e − 10 | 15 | N-R | 0.92 | −0.00000000 | 3.43115e − 09 | 9.26171e − 10 | 15 | N-R | 0.9 | −0.00000000 | 7.94065e − 09 | 3.01220e − 09 | 17 | N-R | 0.9 | −0.00000000 | 5.89937e − 09 | 2.01913e − 09 | 18 | N-R | 0.88 | −0.00000000 | 4.85622e − 09 | 2.27344e − 09 | 21 | N-R | 0.88 | −0.00000000 | 4.71244e − 09 | 1.95934e − 09 | 23 | N-R | 0.86 | −0.00000000 | 7.02051e − 09 | 3.94299e − 09 | 25 | N-R | 0.86 | −0.00000000 | 5.93748e − 09 | 2.90861e − 09 | 30 | N-R | 0.84 | −0.00000000 | 6.69774e − 09 | 4.42000e − 09 | 31 | N-R | 0.84 | −0.00000000 | 7.64084e − 09 | 4.30750e − 09 | 43 | N-R | 0.82 | −0.00000001 | 8.16846e − 09 | 6.23332e − 09 | 39 | N-R | 0.82 | −0.00000001 | 8.48988e − 09 | 5.40319e − 09 | 79 | N-R | 0.8 | −0.00000001 | 7.97894e − 09 | 6.95120e − 09 | 52 | N-R | 0.8 | −0.00506018 | 1.02936e − 02 | 7.19943e − 03 | 500 | N-R | 0.78 | −0.00000001 | 9.79061e − 09 | 9.63595e − 09 | 74 | N-R | 0.78 | −0.07024016 | 1.47568e − 01 | 9.83535e − 02 | 500 | N-R | 0.76 | −0.00000001 | 9.85552e − 09 | 1.08611e − 08 | 125 | N-R | 0.76 | −0.14147226 | 2.83238e − 01 | 1.86505e − 01 | 500 | N-R | 0.74 | −0.00000001 | 9.63986e − 09 | 1.18037e − 08 | 360 | N-R | 0.74 | −1.57171790 | 2.40309e + 00 | 1.13046e + 00 | 500 | N-R | 0.72 | −4.31365378 | 5.71734e − 07 | 5.23966e − 05 | 500 | N-R | 0.72 | −0.00000000 | 9.36668e − 09 | 5.10297e − 09 | 157 | N-R | 0.7 | −4.78460364 | 2.45965e − 01 | 1.47957e + 00 | 500 | N-R | 0.7 | 0.00000000 | 9.82670e − 09 | 5.30280e − 09 | 101 | N-R | 0.68 | −5.71070798 | 5.01626e − 01 | 1.03562e + 01 | 500 | N-R | 0.68 | 0.00000000 | 8.29674e − 09 | 4.54705e − 09 | 85 | N-R | 0.66 | −754.27892554 | 7.80349e + 01 | 2.58569e + 18 | 500 | N-R | 0.66 | −0.00000000 | 8.34916e − 09 | 4.76503e 09 | 82 | N-R | 0.64 | −1411860.53657482 | 1.42625e + 05 | 3.96270e + 44 | 500 | N-R | 0.64 | 0.00000000 | 9.54192e − 09 | 5.80404e − 09 | 89 | N-R | 0.62 | −1063648380.57639720 | 1.04707e + 08 | 4.10943e + 67 | 500 | N-R | 0.62 | −0.00000000 | 8.55254e − 09 | 5.65282e − 09 | 113 | N-R | 0.6 | −875382037053.40283000 | 8.39601e + 10 | 8.59364e + 90 | 500 | N-R | 0.6 | −3.22839026 | 2.60655e − 07 | 1.73936e − 04 | 500 |
|
|