Research Article

Attention-Based Gated Recurrent Graph Convolutional Network for Short-Term Traffic Flow Forecasting

Table 2

The prediction performance of different model on the PeMSD4 dataset.

Methods15 min45 min1 hTraining time (s/epoch)
MAERMSEMAPE (%)MAERMSEMAPE (%)MAERMSEMAPE (%)

HA28.6142.7620.0039.1457.4028.446.3967.3834.60
SVR26.4441.9618.5037.6657.6225.743.4666.4928.90
ARIMA21.834.0514.1032.9149.7621.838.9758.2426.50
MLP21.4733.214.4028.6742.7520.632.7747.8825.405
GRU21.6333.9715.7024.1137.0517.824.5637.7418.3026
T-GCN22.1533.8817.3028.2741.9923.131.3446.4724.5030
HGCN21.133.2814.6027.8142.4519.631.4547.223.0012
ASTGCN19.931.1514.0024.2637.1217.926.840.4720.90150
AGCRN19.2230.0813.2021.4333.2914.522.2534.4215.40110
AGRGCN20.0133.0313.8021.0434.6514.421.5235.2814.9051

The bold values indicate the best performance metrics in the performance comparision.