Research Article
Attention-Based Gated Recurrent Graph Convolutional Network for Short-Term Traffic Flow Forecasting
Table 2
The prediction performance of different model on the PeMSD4 dataset.
| | Methods | 15 min | 45 min | 1 h | Training time (s/epoch) | | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) |
| | HA | 28.61 | 42.76 | 20.00 | 39.14 | 57.40 | 28.4 | 46.39 | 67.38 | 34.60 | — | | SVR | 26.44 | 41.96 | 18.50 | 37.66 | 57.62 | 25.7 | 43.46 | 66.49 | 28.90 | — | | ARIMA | 21.8 | 34.05 | 14.10 | 32.91 | 49.76 | 21.8 | 38.97 | 58.24 | 26.50 | — | | MLP | 21.47 | 33.2 | 14.40 | 28.67 | 42.75 | 20.6 | 32.77 | 47.88 | 25.40 | 5 | | GRU | 21.63 | 33.97 | 15.70 | 24.11 | 37.05 | 17.8 | 24.56 | 37.74 | 18.30 | 26 | | T-GCN | 22.15 | 33.88 | 17.30 | 28.27 | 41.99 | 23.1 | 31.34 | 46.47 | 24.50 | 30 | | HGCN | 21.1 | 33.28 | 14.60 | 27.81 | 42.45 | 19.6 | 31.45 | 47.2 | 23.00 | 12 | | ASTGCN | 19.9 | 31.15 | 14.00 | 24.26 | 37.12 | 17.9 | 26.8 | 40.47 | 20.90 | 150 | | AGCRN | 19.22 | 30.08 | 13.20 | 21.43 | 33.29 | 14.5 | 22.25 | 34.42 | 15.40 | 110 | | AGRGCN | 20.01 | 33.03 | 13.80 | 21.04 | 34.65 | 14.4 | 21.52 | 35.28 | 14.90 | 51 |
|
|
The bold values indicate the best performance metrics in the performance comparision.
|