Research Article
Attention-Based Gated Recurrent Graph Convolutional Network for Short-Term Traffic Flow Forecasting
Table 3
The prediction performance of different model on the HW-ENG dataset.
| | Methods | 15 min | 45 min | 1 h | Training time (s/epoch) | | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) |
| | HA | 76.94 | 115.62 | 39.80 | 95.03 | 142.18 | 49.9 | 104.96 | 156.04 | 56.10 | — | | SVR | 57.06 | 102.21 | 27.70 | 78.38 | 133.03 | 38.4 | 89.22 | 149.64 | 43.40 | — | | ARIMA | 35.5 | 57.34 | 17.70 | 70.57 | 115.26 | 31.6 | 88.73 | 142.65 | 40.00 | — | | MLP | 30.29 | 48.51 | 15.10 | 49.62 | 77.80 | 27.3 | 59.01 | 90.58 | 34.00 | 4 | | GRU | 29.7 | 47.46 | 15.20 | 43.08 | 68.86 | 21.0 | 50.79 | 78.75 | 28.60 | 12 | | T-GCN | 30.47 | 48.42 | 16.00 | 49.46 | 77.54 | 26.6 | 54.43 | 83.71 | 29.70 | 33 | | HGCN | 29.23 | 46.97 | 15.30 | 46.56 | 72.93 | 23.8 | 53.43 | 84.21 | 25.60 | 11 | | ASTGCN | 26.98 | 43.25 | 15.70 | 45.70 | 73.08 | 21.8 | 39.57 | 60.03 | 22.80 | 120 | | AGCRN | 28.72 | 45.23 | 17.80 | 35.64 | 57.57 | 19.5 | 35.92 | 58.81 | 19.40 | 105 | | AGRGCN | 26.06 | 42.23 | 14.80 | 33.12 | 54.27 | 17.5 | 31.16 | 52.2 | 16.30 | 12 |
|
|
The bold values indicate the best performance metrics in the performance comparision.
|