Research Article

The Approximation of Generalized Log-Aesthetic Curves with Cubic Trigonometric Bézier Function

Table 1

The error in approximation for various types of GLAC tested by the error measure .

#Final No of ItrsRemarks

1(){((0, 1.17] × (0, 1.36]) ∥ ([1.17, 1.47] × (0, 1.07])}(1, 1)0.0070
2(){((0, 1.36] × (0, 1.30]) ∥ ([1.36, 1.78] × (0, 0.96])}(1, 1)0.0140
3(){((0, 1.08] × (0, 1.47]) ∥ ([1.08, 1.37] × (0, 1.16])}(1, 1)0.0110
4(){((0, 1.11] × (0, 1.47]) ∥ ([1.11, 1.44] × (0, 1.14])}(1, 1)0.0030
5(){((0, 1.06] × (0, 1.58]) ∥ ([1.06, 1.44] × (0, 1.18])}(1, 1)0.0130
6(){((0, 1.05] × (0, 1.27]) ∥ ([1.05, 1.2] × (0, 1.11])}(1, 1)0.0420Circle involute
7(){((0, 1.18] × (0, 1.42]) ∥ ([1.18, 1.55] × (0, 1.07])}(1, 1)0.0080Circle involute
8(){((0, 1.10] × (0.1.35]) ∥ ([1.1, 1.32] × [0, 1.12])}(1, 1)0.0080Clothoid
9(){((0, 1.01] × (0, 1.77) ∥ ([1.01, 1.4] × (0, 1.31])}(1, 1)0.0190Clothoid
10(){((0, 3.2] × (0, 1.24])(1, 1)0.0150Logarithmic spiral
11(){((0, 1.05] × (0, 1.63]) ∥ ([1.05, 1.42] × (0, 1.21])}(1, 1)0.0070Logarithmic spiral
12(){((0, 1.03] × (0, 1.49]) ∥ ([1.03, 1.3] × (0, 1.2])}(1, 1)0.0380Neilsen’s spiral
13(){((0, 1.00 × (0, 1.74]) ∥ ([1.0, 1.37] × (0, 1.28])}(1, 1)0.0060Neilsen’s spiral
14(){((0, 1.25] × (0, 1.25]) ∥ ([1.25, 1.55] × (0, 0.98])}()0.0451Logarithmic spiral
15(){((0, 1.00] × (0, 1.59]) ∥ ([1.00, 1.33] × (0, 1.2 2])}()0.0251Logarithmic spiral