Research Article
An Efficient Algorithm for Decomposition of Partially Ordered Sets
Table 1
Six different datasets of standard posets evaluate the proposed algorithm.
| No. | Poset | Width | Case | Felsner et al. [3], O(mn2) = O (kn2) | Algorithm 1, O (kn) |
| 1 | Chain poset | 1 | best case | O (n2) | O (n) | 2 | K-tower | 2 | best case | O (n2) | O (n) | 3 | Divisor poset | log n | Average case | O (n2 log n) | O (n log n) | 4 | Crown poset | n/2 | worst case | O (n3) | O (n2) | 5 | 2n-cycle poset | n/2 | worst case | O (n3) | O (n2) | 6 | Antichain poset | n − 1 | worst case | O (n3) | O (n2) |
|
|