Research Article

A Second-Order Finite-Difference Method for Derivative-Free Optimization

Table 1

Test problem.

NameThe form of the problem

Crescent [26]2

CB2 [26]2

CB3 [26]2

DEM [26]2

QL [26]2

LQ [26]2

Mifflin 1 [26]2

Mifflin 2 [26]2

Rosen-Suzuki [26]4

Shor [26]5 are given in [26]

Colville [26]5
are given in [26]

HS78 [26]5

El-Attar [26]6

Maxquad [26]10,
,

Gill [26]10

Maxl [26]{10, 20, 30}

TR48 [26]{10, 20, 30}, and are given in [26]

L1HILB [26]{10, 20, 30}

Shell Dual [26]15
, are given in [26]

Chained LQ [28]{10, 20, 30}

Chained CB3 I [28]{10, 20, 30}

Chained CB3 II [28]{10, 20, 30}

Number of active faces [28]{10, 20, 30}

Nonsmooth generalization of brown function 2 [28]{10, 20, 30}

Chained Mifflin2 [28]{10, 20, 30}

Chained crescent I [28]{10, 20, 30}

Chained crescent II [28]{10, 20, 30}