Controlled Synthesis of Sb 2 O 3 Nanoparticles, Nanowires, and Nanoribbons
References
B. Pillep, P. Behrens, U.-A. Schubert, J. Spengler, and H. Knözinger, “Mechanical and thermal spreading of antimony oxides on the surface: dispersion and properties of surface antimony oxide species,” Journal of Physical Chemistry B, vol. 103, no. 44, pp. 9595–9603, 1999.
View at: Google ScholarU.-A. Schubert, F. Anderle, J. Spengler et al., “Possible effects of site isolation in antimony oxide-modified vanadia/titania catalysts for selective oxidation of o-xylene,” Topics in Catalysis, vol. 15, no. 2–4, pp. 195–200, 2001.
View at: Google ScholarE. A. Toledo, Y. Gushikem, and S. C. De Castro, “Antimony(III) oxide film on a cellulose fiber surface: preparation and characterization of the composite,” Journal of Colloid and Interface Science, vol. 225, no. 2, pp. 455–459, 2000.
View at: Google ScholarK.-T. Li and Z.-H. Chi, “Effect of antimony oxide on magnesium vanadates for the selective oxidation of hydrogen sulfide to sulfur,” Applied Catalysis B: Environmental, vol. 31, no. 3, pp. 173–182, 2001.
View at: Google ScholarY. Cao, R. Jin, and C. A. Mirkin, “DNA-modified core-shell Ag/Au nanoparticles,” Journal of the American Chemical Society, vol. 123, no. 32, pp. 7961–7962, 2001.
View at: Google ScholarC. Ye, G. Meng, L. Zhang, G. Wang, and Y. Wang, “A facile vapor-solid synthetic route to fibrils and tubules,” Chemical Physics Letters, vol. 363, no. 1-2, pp. 34–38, 2002.
View at: Google ScholarL. Guo, Z. Wu, T. Liu, W. Wang, and H. Zhu, “Synthesis of novel and nanorods,” Chemical Physics Letters, vol. 318, no. 1–3, pp. 49–52, 2000.
View at: Google ScholarS. Friedrichs, R. R. Meyer, J. Sloan, A. I. Kirkland, J. L. Hutchison, and M. L. H. Green, “Complete characterisation of a /(21,-8)SWNT inclusion composite,” Chemical Communications, no. 10, pp. 929–930, 2001.
View at: Google ScholarS. Xiang, X. Yang, and T. Cao, Nitrogen, Phosphorus, and Arsenic Subgroup, vol. 4 of Inorganic Chemistry Series, Scientific Press, Bejing, China, 2000.
M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, and E. Wang, “A controllable synthetic route to Cu, , and CuO nanotubes and nanorods,” Chemical Communications, vol. 9, no. 15, pp. 1884–1885, 2003.
View at: Google ScholarL. Wang, S. Tomura, F. Ohashi, M. Maeda, M. Suzuki, and K. Inukai, “Synthesis of single silica nanotubes in the presence of citric acid,” Journal of Materials Chemistry, vol. 11, no. 5, pp. 1465–1468, 2001.
View at: Google ScholarE. Leontidis, T. Kyprianidou-Leodidou, W. Caseri, and K. C. Kyriacou, “From beads-on-a-string to colloidal aggregation: novel crystallization phenomena in the PEO-SDS system,” Langmuir, vol. 15, no. 10, pp. 3381–3385, 1999.
View at: Google ScholarN. Pinna, K. Weiss, H. Sack-Kongehl, W. Vogel, J. Urban, and M. P. Pileni, “Triangular CdS nanocrystals: synthesis, characterization, and stability,” Langmuir, vol. 17, no. 26, pp. 7982–7987, 2001.
View at: Google ScholarM. P. Pileni, “Nanocrystal self-assemblies: fabrication and collective properties,” Journal of Physical Chemistry B, vol. 105, no. 17, pp. 3358–3371, 2001.
View at: Google ScholarW. Wang, Y. Zhan, and G. Wang, “One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant,” Chemical Communications, no. 8, pp. 727–728, 2001.
View at: Google ScholarN. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Advanced Materials, vol. 13, no. 18, pp. 1389–1393, 2001.
View at: Google ScholarC. N. R. Rao, A. Govindaraj, F. L. Deepak, N. A. Gunari, and M. Nath, “Surfactant-assisted synthesis of semiconductor nanotubes and nanowires,” Applied Physics Letters, vol. 78, no. 13, pp. 1853–1855, 2001.
View at: Google ScholarM. Cao, C. Hu, G. Peng, Y. Qi, and E. Wang, “Selected-control synthesis of and single-crystalline nanorods,” Journal of the American Chemical Society, vol. 125, no. 17, pp. 4982–4983, 2003.
View at: Google ScholarE. Leontidis, M. Orphanou, T. Kyprianidou-Leodidou, F. Krumeich, and W. Caseri, “Composite nanotubes formed by self-assembly of PbS nanoparticles,” Nano Letters, vol. 3, no. 4, pp. 569–572, 2003.
View at: Google ScholarJ. H. Fendler and E. J. Fendler, Catalysis in Micellar and Macromolecular Systems, Academic Press, New York, NY, USA, 1975.
W. F. C. Sager, “Controlled formation of nanoparticles from microemulsions,” Current Opinion in Colloid and Interface Science, vol. 3, no. 3, pp. 276–283, 1998.
View at: Google ScholarK. Grieve, P. Mulvaney, and F. Grieser, “Synthesis and electronic properties of semiconductor nanoparticles/quantum dots,” Current Opinion in Colloid and Interface Science, vol. 5, no. 1-2, pp. 168–172, 2000, and references therein.
View at: Google ScholarS. Biz and M. L. Occelli, “Synthesis and characterization of mesostructured materials,” Catalysis Reviews—Science and Engineering, vol. 40, no. 3, pp. 329–407, 1998.
View at: Google ScholarX. Wen, W. Zhang, S. Yang, Z. R. Dai, and Z. L. Wang, “Solution phase synthesis of nanoribbons by coordination self-assembly using nanowires as precursors,” Nano Letters, vol. 2, no. 12, pp. 1397–1401, 2002.
View at: Google ScholarC. Ye, X. Fang, Y. Wang, T. Xie, A. Zhao, and L. Zhang, “Novel synthesis of tin dioxide nanoribbons via a mild solution approach,” Chemistry Letters, vol. 33, no. 1, pp. 54–55, 2004.
View at: Google Scholar