Research Article

Identification of Salty Dietary Patterns of the Japanese Macroregion

Table 5

Loading scores of cities in dietary patterns (Factors 1 to 3) identified using partial least squares regression analysis.

No.Name of a cityFactor 1 2015Factor 1 2018Factor 2 2013Factor 2 2018Factor 3 2013Factor 3 2018

1Sapporo-shi3.621.14−3.29−4.46−2.96−4.29
2Aomori-shi11.3611.78−0.844.55−3.83−1.16
3Morioka-shi6.678.491.32−0.502.610.08
4Sendai-shi4.593.05−1.66−2.632.120.11
5Akita-shi9.337.901.12−1.89−1.36−4.79
6Yamagata-shi7.704.575.392.066.881.40
7Fukushima-shi4.451.601.61−1.141.18−2.49
8Mito-shi−0.552.24−3.57−0.66−1.510.20
9Utsunomiya-shi−0.060.23−2.18−1.73−1.301.30
10Maebashi-shi−1.491.20−2.42−0.350.222.00
11Saitama-shi−0.991.02−4.53−3.741.732.15
12Chiba-shi1.641.44−5.23−4.890.030.76
13Ku-areas of Tokyo−2.03−1.60−6.13−5.150.611.32
14Yokohama-shi−0.64−0.58−7.02−4.001.402.17
15Niigata-shi8.947.92−1.62−1.25−1.07−0.47
16Toyama-shi2.843.96−0.16−0.15−0.37−1.34
17Kanazawa-shi−0.281.050.201.89−0.201.12
18Fukui-shi−1.26−1.933.21−0.63−0.04−2.91
19Kofu-shi1.01−0.49−3.310.610.403.98
20Nagano-shi2.395.350.295.732.517.45
21Gifu-shi−2.55−1.660.39−1.79−1.18−0.58
22Shizuoka-shi−0.16−0.64−4.25−2.770.112.43
23Nagoya-shi−2.29−1.61−2.37−1.97−0.501.14
24Tsu-shi−2.40−0.861.87−0.440.75−1.56
25Otsu-shi−4.521.31−0.33−1.131.510.57
26Kyoto-shi−1.80−0.66−0.88−2.483.530.42
27Osaka-shi−4.26−1.47−0.71−0.800.61−0.74
28Kobe-shi−4.72−4.750.11−1.670.920.39
29Nara-shi−1.43−0.240.54−1.871.18−0.17
30Wakayama-shi−3.76−2.030.932.59−1.320.42
31Tottori-shi2.292.433.264.22−4.92−3.03
32Matsue-shi2.550.944.62−0.05−0.08−2.51
33Okayama-shi−4.19−2.411.093.45−1.383.09
34Hiroshima-shi−1.55−1.08−0.052.29−1.410.10
35Yamaguchi-shi−1.55−0.473.703.20−1.81−1.96
36Tokushima-shi−1.68−4.091.751.760.35−0.75
37Takamatsu-shi−3.18−1.462.543.010.050.49
38Matsuyama-shi−3.64−3.313.113.71−1.13−0.20
39Kochi-shi−1.22−3.096.632.302.60−0.75
40Fukuoka-shi−3.06−3.770.16−0.940.46−0.48
41Saga-shi2.00−0.632.541.77−2.88−1.48
42Nagasaki-shi−1.81−2.071.321.26−2.26−1.19
43Kumamoto-shi−1.99−4.392.783.41−1.26−1.43
44Oita-shi0.09−1.225.653.571.62−0.99
45Miyazaki-shi−3.01−3.603.474.66−0.870.05
46Kagoshima-shi−2.39−3.681.843.77−2.060.06
47Naha-shi−6.05−8.740.10−3.180.80−1.15
48Kawasaki-shi−0.42−0.41−6.40−4.471.452.40
49Sagamihara-shi1.092.02−3.83−3.841.071.60
50Hamamatsu-shi−1.62−1.80−1.77−0.37−1.611.44
51Sakai-shi−0.24−2.770.16−0.672.72−0.19
52Kitakyushu-shi0.45−1.921.531.76−2.06−2.60
Spearman’s correlation coefficient between 2013 and 20180.770.710.38

Family Income and Expenditure Survey in 2013/2018. ; . Numbers 1 to 47 are prefectural capitals and 48 to 52 are ordinance-designated cities. The numbers correspond to those in Supporting Figure S1 (distribution map of prefectures in Japan).