Identification of Salty Dietary Patterns of the Japanese Macroregion
Table 5
Loading scores of cities in dietary patterns (Factors 1 to 3) identified using partial least squares regression analysis.
No.
Name of a city
Factor 1 2015
Factor 1 2018
Factor 2 2013
Factor 2 2018
Factor 3 2013
Factor 3 2018
1
Sapporo-shi
3.62
1.14
−3.29
−4.46
−2.96
−4.29
2
Aomori-shi
11.36
11.78
−0.84
4.55
−3.83
−1.16
3
Morioka-shi
6.67
8.49
1.32
−0.50
2.61
0.08
4
Sendai-shi
4.59
3.05
−1.66
−2.63
2.12
0.11
5
Akita-shi
9.33
7.90
1.12
−1.89
−1.36
−4.79
6
Yamagata-shi
7.70
4.57
5.39
2.06
6.88
1.40
7
Fukushima-shi
4.45
1.60
1.61
−1.14
1.18
−2.49
8
Mito-shi
−0.55
2.24
−3.57
−0.66
−1.51
0.20
9
Utsunomiya-shi
−0.06
0.23
−2.18
−1.73
−1.30
1.30
10
Maebashi-shi
−1.49
1.20
−2.42
−0.35
0.22
2.00
11
Saitama-shi
−0.99
1.02
−4.53
−3.74
1.73
2.15
12
Chiba-shi
1.64
1.44
−5.23
−4.89
0.03
0.76
13
Ku-areas of Tokyo
−2.03
−1.60
−6.13
−5.15
0.61
1.32
14
Yokohama-shi
−0.64
−0.58
−7.02
−4.00
1.40
2.17
15
Niigata-shi
8.94
7.92
−1.62
−1.25
−1.07
−0.47
16
Toyama-shi
2.84
3.96
−0.16
−0.15
−0.37
−1.34
17
Kanazawa-shi
−0.28
1.05
0.20
1.89
−0.20
1.12
18
Fukui-shi
−1.26
−1.93
3.21
−0.63
−0.04
−2.91
19
Kofu-shi
1.01
−0.49
−3.31
0.61
0.40
3.98
20
Nagano-shi
2.39
5.35
0.29
5.73
2.51
7.45
21
Gifu-shi
−2.55
−1.66
0.39
−1.79
−1.18
−0.58
22
Shizuoka-shi
−0.16
−0.64
−4.25
−2.77
0.11
2.43
23
Nagoya-shi
−2.29
−1.61
−2.37
−1.97
−0.50
1.14
24
Tsu-shi
−2.40
−0.86
1.87
−0.44
0.75
−1.56
25
Otsu-shi
−4.52
1.31
−0.33
−1.13
1.51
0.57
26
Kyoto-shi
−1.80
−0.66
−0.88
−2.48
3.53
0.42
27
Osaka-shi
−4.26
−1.47
−0.71
−0.80
0.61
−0.74
28
Kobe-shi
−4.72
−4.75
0.11
−1.67
0.92
0.39
29
Nara-shi
−1.43
−0.24
0.54
−1.87
1.18
−0.17
30
Wakayama-shi
−3.76
−2.03
0.93
2.59
−1.32
0.42
31
Tottori-shi
2.29
2.43
3.26
4.22
−4.92
−3.03
32
Matsue-shi
2.55
0.94
4.62
−0.05
−0.08
−2.51
33
Okayama-shi
−4.19
−2.41
1.09
3.45
−1.38
3.09
34
Hiroshima-shi
−1.55
−1.08
−0.05
2.29
−1.41
0.10
35
Yamaguchi-shi
−1.55
−0.47
3.70
3.20
−1.81
−1.96
36
Tokushima-shi
−1.68
−4.09
1.75
1.76
0.35
−0.75
37
Takamatsu-shi
−3.18
−1.46
2.54
3.01
0.05
0.49
38
Matsuyama-shi
−3.64
−3.31
3.11
3.71
−1.13
−0.20
39
Kochi-shi
−1.22
−3.09
6.63
2.30
2.60
−0.75
40
Fukuoka-shi
−3.06
−3.77
0.16
−0.94
0.46
−0.48
41
Saga-shi
2.00
−0.63
2.54
1.77
−2.88
−1.48
42
Nagasaki-shi
−1.81
−2.07
1.32
1.26
−2.26
−1.19
43
Kumamoto-shi
−1.99
−4.39
2.78
3.41
−1.26
−1.43
44
Oita-shi
0.09
−1.22
5.65
3.57
1.62
−0.99
45
Miyazaki-shi
−3.01
−3.60
3.47
4.66
−0.87
0.05
46
Kagoshima-shi
−2.39
−3.68
1.84
3.77
−2.06
0.06
47
Naha-shi
−6.05
−8.74
0.10
−3.18
0.80
−1.15
48
Kawasaki-shi
−0.42
−0.41
−6.40
−4.47
1.45
2.40
49
Sagamihara-shi
1.09
2.02
−3.83
−3.84
1.07
1.60
50
Hamamatsu-shi
−1.62
−1.80
−1.77
−0.37
−1.61
1.44
51
Sakai-shi
−0.24
−2.77
0.16
−0.67
2.72
−0.19
52
Kitakyushu-shi
0.45
−1.92
1.53
1.76
−2.06
−2.60
Spearman’s correlation coefficient between 2013 and 2018
0.77
0.71
0.38
Family Income and Expenditure Survey in 2013/2018. ;. Numbers 1 to 47 are prefectural capitals and 48 to 52 are ordinance-designated cities. The numbers correspond to those in Supporting Figure S1 (distribution map of prefectures in Japan).