| General characteristics | Dataset characteristics | Definition and grade of ROP | Author | Year, data source | Camera | Reference standard | Dataset | Identification and grade |
| Brown et al. [24] | 2018, i-ROP | RetCam | RSD, images and clinical diagnosis | 5511 images | 4535 N, 805 pre and 172 plus | Wang et al. [25] | 2018, hospital and web | RetCam 3 | ICROP, CRYO-ROP, and ETROP | 3722 cases | 2823 N and 899 ROP; 382 Min and 295 S | Hu et al. [26] | 2019, hospital | RetCam 3 | Consistent label | 2668 images | 1484 N and 1184 ROP; 382 Mil and 295 S | Tan et al. [27] | 2019, ART-ROP | RetCam | Images and clinical diagnosis | 6974 images | 5336 N and 1638 plus | Wang et al. [28] | 2019, hospital | NR | Consistent label | 11000 images | 7559 N and 3441 ROP; 529 Mil and 1204 S | Zhang et al. [29] | 2019, hospital | RetCam 2/3 | The same criteria | 19543 images | 11298 N and 8245 ROP | Huang et al. [30] | 2020, hospital | RetCam | ICROP + consistent label | 18808 images | 1222 N and 1129 ROP; 1189 Mil and 1174 S | Ramachandran et al. [31] | 2021, KIDROP | RetCam 3 | Consistent label | 289 infants | 200 N and 89 plus | Wang et al. [32] | 2021, hospital | RetCam 2/3 | Consistent label | 52249 images | 6363 any stage and 42177 N; 885 pre or plus and 17223 N |
| DL model characteristics | Author | Neural network | Algorithm evaluation | Classification |
| Brown et al. [24] | CNN: U-Net and Inception V1 | The 5-fold cross-validation | N/pre and plus | Plus/N and pre | Wang et al. [25] | DNN: Id-Net and Gr-Net | NR | N/ROP | Min/S | Hu et al. [26] | CNN: a pretrained ImageNet (VGG16, inception V2, and ResNet-50) | Select the best module and image size | N/ROP | Mil/S | Tan et al. [27] | CNN: Inception V3 | NR | N/plus | Wang et al. [28] | CNN: a pretrained ImageNet (Inception V2, Inception V3, and ResNet-50) | Select the best module | N/ROP | Mil/S | Zhang et al. [29] | DNN: AlexNet, VGG16, and GoogLeNet | Select the best module | N/ROP | Huang et al. [30] | DNN: VGG16, VGG19, MobileNet, InceptionV3, and DenseNet | Select the best module and then 5-fold cross-validation | N/ROP | Mil/S | Ramachandran et al. [31] | CNN: a pretrained ImageNet (Darknet-53 network) | Select the best module | N/plus | Wang et al. [32] | CNN: ResNet18, DenseNet121, and EfficientNetB2 | Five independent classifiers validation | Preplus plus/non | Any stage/non | Accuracy values | Author | Negative vs. positive | TD | VD | ACC | SN | SP | AUC | TED | ACC | SN | SP | AUC |
| Brown et al. [24] | N vs. pre and plus | 80% | 20% | NR | NR | NR | 0.94 | 100 (from the same set with TD) | 0.91 | 0.93 | 0.94 | NR | N and pre vs. plus | 80% | 20% | NR | NR | NR | 0.98 | 1 | 0.94 | NR | Wang et al. [25] | N vs. ROP | 2226 | 298 | NR | 0.9664 | 0.9933 | 0.9949 | 944 (from web) | NR | 0.8491 | 0.9690 | NR | Min vs. S | 2004 | 104 | NR | 0.8846 | 0.9231 | 0.9508 | 106 (from web) | NR | 0.933 | 0.736 | NR | Hu et al. [26] | N vs. ROP | 2068 | 300 | 0.97 | 0.96 | 0.98 | 0.9922 | 406 (from the same set with TD) | NR | 0.900 | 0.989 | NR | Mil vs. S | 466 | 100 | 0.84 | 0.82 | 0.86 | 0.9212 | 31 (from ROP in TED) | NR | 0.944 | 0.923 | NR | Tan et al. [27] | N vs. plus | 5579 | 1395 | 0.973 | 0.966 | 0.98 | 0.993 | 90 (external set) | 0.856 | 0.939 | 0.807 | NR | Wang et al. [28] | N vs. ROP | 8507 | 1228 | 0.927 | 0.8999 | NR | NR | 1265 (from TD) | NR | NR | NR | NR | Mil vs. S | 1175 | 269 | 0.785 | 0.9235 | NR | NR | 289 (from ROP in TED) | NR | NR | NR | NR | Zhang et al. [29] | N vs. ROP | 17801 | 1742 | 0.988 | 0.935 | 0.995 | 0.998 | 1742 (from the same set with TD) | 0.988 | 0.935 | 0.995 | 0.998 | Huang et al. [30] | N vs. ROP | 2351 | 368 cases | NR | Average 0.911 | Average 0.992 | NR | 101 (from the same set with TD) | 0.96 | 0.966 | 0.952 | 0.97 | Mil vs. S | 2363 | 339 cases | NR | Average 0.987 | Average 0.985 | NR | 85 (from ROP in TED) | 0.988 | 1 | 0.984 | 0.99 | Ramachandran et al. [31] | N vs. plus | About 80% | About 20% | 0.99 | 0.99 | 0.98 | 0.9947 | 1610 (from the same set with TD) | NR | 0.98 | 0.98 | NR | Wang et al. [32] | Non vs. any stage | 36235 | 4813 | NR | 0.972 | 0.984 | 0.9977 | 7492 (from the same set with TD) | NR | 0.982 | 0.985 | 0.9981 | Non vs. preplus and plus | 13524 | 1866 | NR | 0.909 | 0.984 | 0.9882 | 2718 (from the same set with TD) | NR | 0.918 | 0.97 | 0.9827 |
|
|
ROP, retinopathy of prematurity. Reference Standard. Based on images: RSD, a reference standard diagnosis; ICROP, International Classification of ROP, and based on both images and clinical information: CRYO-ROP, Cryotherapy for Retinopathy of Prematurity; ETROP, early treatment ROP; N, normal, pre, preplus disease; plus, plus disease; Min, minor; Mil, mild; S, severe; i-ROP, Imaging and Informatics in Retinopathy of Prematurity; ART-ROP, Auckland Regional Telemedicine ROP image library; KIDROP, Karnataka Internet assisted diagnosis of ROP program; DL, deep learning; CNN, convolutional neural network; DNN, deep neural network; DCNN, deep convolutional neural network; TD, training dataset; VD, validation dataset; TED, test dataset. Total data set includes TD, VD, and TED; ACC, accuracy; SN, sensitivity; SP, specificity; AUC, area under the receiver operating curve; NR, not reported.
|