Research Article
Edge Detection from RGB-D Image Based on Structured Forests
Algorithm 1
Growth randomized tree (
).
| Input: training sample set , , | | Output: random tree classifier | | if all the training samples of belong to the same category or , then | | return | | end if | | select parameter space subset randomly: | | for to do | | | | end for | | Compute the optimal parameter of the node classifier: | | Set the current dataset of the left and right child nodes : , | | for to do | | if then | | | | else | | | | end if | | end for | | New left child node: | | New right child node: | | return |
|