Research Article

Improving Rolling Bearing Fault Diagnosis by DS Evidence Theory Based Fusion Model

Table 1

Feature matrix of some samples.

 ClassVarianceKurtosisMeanStdSkewnessPeakMedianRMSCF factor

Train
set
10.021416.15390.00110.08702.08540.58700.13778.39190.0873
10.111512.49340.00110.09842.06470.66430.10638.75190.1421
10.007512.26250.00110.13462.07550.81430.11488.23100.2199
20.034015.09170.00120.18432.67641.21980.18436.61730.2248
20.009810.73450.00090.09881.69250.66940.09986.77630.0661
20.139620.13650.00100.37363.43062.64300.37367.07340.9875
30.088628.74870.00070.39184.11602.56140.21496.32820.9030
30.184326.81390.00110.55964.09483.29830.32694.96031.6723
30.234333.85790.00100.34223.45602.49160.19913.73951.0920

Test
set
10.027412.08300.00100.08632.06560.95900.10968.63860.1770
10.055913.70780.00080.06622.43630.78310.09596.79020.0352
10.008813.03940.00100.16022.19011.23090.12016.81030.0270
20.093417.27090.00120.15130.57660.61900.28419.14930.9153
20.005924.55570.00110.11970.82122.00960.17399.83130.7793
20.117818.07370.00110.31401.01142.22610.178910.64990.5463
30.138734.24240.00090.34734.38343.30070.46389.36891.4088
30.312628.77600.00070.38424.16921.84290.331110.66520.5623
30.295929.13220.00100.45853.31892.31070.18464.48791.2974