Research Article
[Retracted] Channel-Wise Correlation Calibrates Attention Module for Convolutional Neural Networks
Table 1
Test accuracy (%) on CIFAR-10/CIFAR-100 by DenseNet.
| Model | Para (M) | GFloat | CIFAR-10 | CIFAR-100 |
| DenseNet-40 | 1.059 | 0.293 | 94.67 | 74.69 | DenseNet-40+LCM1 | 1.065 | 0.293 | 95.26 | 75.61 | DenseNet-40+LCM2 | 1.065 | 0.293 | 95.32 | 75.79 | DenseNet-64 | 2.830 | 0.761 | 95.20 | 77.52 | DenseNet-64+LCM1 | 2.840 | 0.761 | 95.84 | 78.22 | DenseNet-64+LCM2 | 2.840 | 0.761 | 95.84 | 78.24 | DenseNet-100 | 7.084 | 1.875 | 95.66 | 78.76 | DenseNet-100+LCM1 | 7.100 | 1.875 | 95.97 | 79.12 | DenseNet-100+LCM2 | 7.100 | 1.875 | 96.01 | 79.44 |
|
|