Research Article
[Retracted] Channel-Wise Correlation Calibrates Attention Module for Convolutional Neural Networks
Table 4
Test accuracy (%) on different models on CIFAR-100.
| Model | Para (M) | GFloat | CIFAR-10 |
| DenseNet-100 | 7.084 | 1.875 | 78.76 | DenseNet-100+SE | 7.113 | 1.875 | 79.41 | DenseNet-100+nonlocal | 7.084 | 1.875 | 79.22 | DenseNet-100+CBAM | 7.121 | 1.879 | 75.86 | DenseNet-100+GC | 7.117 | 1.875 | 79.14 | DenseNet-100+LCM | 7.100 | 1.875 | 79.44 | ResNet-50 | 0.756 | 0.113 | 72.25 | ResNet-50+SE | 0.778 | 0.113 | 73.04 | ResNet-50+CBAM | 0.781 | 0.114 | 72.95 | ResNet-50+nonlocal | 0.758 | 0.114 | 72.82 | ResNet-50+GC | 0.778 | 0.113 | 71.85 | ResNet-50+LCM | 0.778 | 0.113 | 73.87 |
|
|