Research Article
[Retracted] Channel-Wise Correlation Calibrates Attention Module for Convolutional Neural Networks
Table 5
Test accuracy (%) on different models on mini-ImageNet.
| Model | Para (M) | GFloat | Top1 | Top5 |
| DenseNet-121 | 8.081 | 2.898 | 82.45 | 95.17 | DenseNet-121+SE | 8.113 | 2.898 | 82.61 | 95.17 | DenseNet-121+nonlocal | 8.084 | 2.899 | 82.19 | 95.09 | DenseNet-121+CBAM | 8.119 | 2.902 | 80.60 | 94.56 | DenseNet-121+GC | 8.113 | 2.899 | 79.47 | 93.94 | DenseNet-121+LCM | 8.112 | 2.898 | 83.05 | 95.23 | ResNet-50 | 23.71 | 4.132 | 80.54 | 94.60 | ResNet-50+SE | 26.24 | 4.137 | 81.46 | 94.94 | ResNet-50+CBAM | 26.25 | 4.143 | 82.33 | 95.15 | ResNet-50+nonlocal | 25.82 | 4.544 | 80.23 | 94.23 | ResNet-50+GC | 26.24 | 4.138 | 77.06 | 92.89 | ResNet-50+LCM | 24.97 | 4.133 | 81.94 | 95.09 | ResNeXt-50 32 × 4d | 23.19 | 4.287 | 81.54 | 94.76 | ResNeXt-50 32 × 4d + SE | 25.72 | 4.292 | 82.40 | 95.06 | ResNeXt-50 32 × 4d + CBAM | 25.72 | 4.298 | 82.56 | 95.31 | ResNeXt-50 32 × 4d + nonlocal | 25.29 | 4.699 | 81.13 | 94.53 | ResNeXt-50 32 × 4d + GC | 33.19 | 4.300 | 76.18 | 92.26 | ResNeXt-50 32 × 4d + LCM | 23.81 | 4.287 | 82.72 | 95.25 |
|
|