Research Article
Research on the Intrusion Detection Model of Underwater Sensor Networks
Algorithm 2
SMOTE algorithm pseudo code.
| Algorithm 2 Oversampling algorithm SMOTE(T, N, k) | | Input: T——Number of minority class samples | | N——Amount of SMOTE | | k——Number of nearest neighbors | | Output: (N/100)T | | 1. numattrs——Number of attributes | | 2. Sample[ ][ ]——array for original minority class samples | | 3. newindex——keeps a count of number of synthetic samples generated, initialized to 0 | | 4. Synthetic[ ][ ]——array for synthetic samples | | 5. if N < 100 | | 6. then Randomize the T minority class samples | | 7. T = (N/100)T | | 8. N = 100 | | 9. endif | | 10. N = (int)(N/100) | | 11. for i = 1 to T do | | 12 Compute k nearest neighbors for i, and save the indices in the nnarray | | 13. Populate(N, i, nnarray) | | 14. endfor | | 15. nnarray——Storing nearest neighbor arrays | | 16. while N != 0 do | | 17. nn = random(1,k) | | 18. for attr = 1 to numattrs do | | 19. Compute: dif = Sample[nnarray[nn]][attr]- Sample[i][attr] | | 20. Compute: gap = random(0, 1) | | 21. Synthetic[newindex][attr] = Sample[i][attr] + gap dif | | 22. endfor | | 23. newindex + + | | 24. N − − | | 25. endwhile |
|