Research Article
[Retracted] A Novel Attention-Based Lightweight Network for Multiscale Object Detection in Underwater Images
Table 4
Comparison of the model size and real-time performance of different methods.
| Method | Backbone | Input size | Parameters () | Model size (MB) | FLOPs () | FPS |
| Yolov5 | Darknet53 | | 5.4 | 22.8 | 40.57 | 72 | RON | VGG16 | | 31.9 | 128.6 | 15.47 | 15 | RefineDet | VGG16 | | 50.5 | 200.2 | 18.98 | 40.7 | STDN | DenseNet169 | | 29.5 | 120.1 | 3.41 | 28.6 | SWIPENet | VGG16 | | ~ | ~ | ~ | 30 | Faster R-CNN-AON | VGG16 | | 84.1 | 336.3 | 23.67 | 24 | RFBNet | VGG16 | | 34.5 | 140.0 | 45.42 | 83 | Ours | MobileNetv3 | | 7.8 | 31.2 | 21.70 | 44.3 |
|
|