Research Article
Visual Interaction Force Estimation Based on Time-Sensitive Dual-Resolution Learning Network
Table 1
Comparison results with state-of-the-art force estimation methods.
| ID | Method | RMSE | MAE | MSE | | Inference time (s) |
| (a) | VGG19 (, 400000 images) | 0.2201 | 0.1969 | 0.0484 | -0.0279 | | (b) | Resnet (, 400000 images) | 0.2197 | 0.1914 | 0.0483 | -0.0215 | | (c) | VGG+LSTM (, 400000 images) | 0.2161 | 0.1825 | 0.0467 | -0.0026 | | (d) | Resnet+LSTM (, 400000 images) | 0.2182 | 0.1840 | 0.0476 | -0.1165 | | (e) | 3DCNN+Attention+LSTM | 0.0955 | 0.0312 | 0.0091 | ā | | (f) | Our method (, 40000 images) | 0.0480 | 0.0329 | 0.0023 | 0.9718 | | (g) | Our method (, 400000 images) | 0.0397 | 0.0243 | 0.0015 | 0.9725 | | (h) | Simplified version of our method (, 400000 images) | 0.0313 | 0.0183 | 0.0009 | 0.9833 | | (i) | Simplified version of our method (, 400000 images) | 0.0295 | 0.0185 | 0.0008 | 0.9850 | |
|
|