Research Article
G-YOLOX: A Lightweight Network for Detecting Vehicle Types
Table 4
Comparison of models with the VOC2019 dataset.
| Model | Parameters (M) | GFLOPs | Weight file (MB) | mAP50 | mAP50_95 |
| YOLOX_s | 8.95 | 26.68 | 70.207 | 0.8885 | 0.7568 | Ghost+YOLOX_s | 4.52↓49.5% | 13.63↓48.9% | 46.387↓34% | 0.8918↑0.0033 | 0.7611↑0.0043 | G-YOLOX (ours) | 2.95↓67.1% | 7.00↓73.8% | 41.878↓40.4% | 0.8883↓0.0002 | 0.7402↓0.0166 |
|
|