Research Article

Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform

Pseudocode 2

Web development.
DEFINE FUNCTION predict(filename):
 #Step 1
 SET my_image TO plt.imread(os.path.join(‘uploads’, filename))
 #Step 2
 SET my_image_read TO resize(my_image (224,224,1))
 #Step 3
 CALL #F with graph.as_default():
  CALL #F set_session(sess)
  SET #Fmodel TO tf.keras.models.load_model(“model_name.h5”)
  CALL #F model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate =),#‘adam’,
    loss = ‘categorical_cross-entropy’,
    metrics = [‘accuracy’])
  SET #F probabilities TO model.predict(np.array([my_image_read])) [0,:]
  CALL #F OUTPUT(probabilities)
 #Step 4
 SET number_to_class TO [‘fifty’, ‘five’, ‘hundred’, ‘ten’, ‘twohundred’]
 SET #F index TO np.argsort(probabilities)
 SET predictions TO {“class1”: number_to_class[index [3]],
    “class2”:number_to_class[index [2]],
    “class3”:number_to_class[index [1]],
    “prob1”:probabilities[index [3]],
    “prob2”:probabilities[index [2]],
    “prob3”:probabilities[index [1]]}
 #Step 5
 CALL #F RETURN render template(‘predict.html’, predictions = predictions)