Research Article

Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform

Table 3

Training accuracy of batch sizes 32, 64, and 128.

Optimization
Model
Batch size 32Batch size 64Batch size 128
IV3MNXNRNIV3MNXNRNIV3MNXNRN

Adam96.3896.9694.8094.7896.3096.9695.4494.8596.4696.9694.6194.83
SGD95.7594.5691.5996.5696.3092.6594.1296.4296.4692.9392.2896.47
RMSProp96.5996.9892.2894.6596.5896.9892.2094.5796.5796.9896.2094.56
Nadam96.4596.9696.2994.9396.3596.9696.2496.0096.3796.9696.2596.02
Adadelta59.3487.3189.6194.7551.1586.0991.3594.9946.4687.1094.3094.89
Adagrad91.4894.8294.4796.8885.3494.8994.4496.8791.9496.0094.6196.88