Research Article
Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform
Table 3
Training accuracy of batch sizes 32, 64, and 128.
| Optimization | Model | Batch size 32 | Batch size 64 | Batch size 128 | IV3 | MN | XN | RN | IV3 | MN | XN | RN | IV3 | MN | XN | RN |
| Adam | 96.38 | 96.96 | 94.80 | 94.78 | 96.30 | 96.96 | 95.44 | 94.85 | 96.46 | 96.96 | 94.61 | 94.83 | SGD | 95.75 | 94.56 | 91.59 | 96.56 | 96.30 | 92.65 | 94.12 | 96.42 | 96.46 | 92.93 | 92.28 | 96.47 | RMSProp | 96.59 | 96.98 | 92.28 | 94.65 | 96.58 | 96.98 | 92.20 | 94.57 | 96.57 | 96.98 | 96.20 | 94.56 | Nadam | 96.45 | 96.96 | 96.29 | 94.93 | 96.35 | 96.96 | 96.24 | 96.00 | 96.37 | 96.96 | 96.25 | 96.02 | Adadelta | 59.34 | 87.31 | 89.61 | 94.75 | 51.15 | 86.09 | 91.35 | 94.99 | 46.46 | 87.10 | 94.30 | 94.89 | Adagrad | 91.48 | 94.82 | 94.47 | 96.88 | 85.34 | 94.89 | 94.44 | 96.87 | 91.94 | 96.00 | 94.61 | 96.88 |
|
|