Research Article
Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform
Table 4
Test accuracy of batch sizes 32, 64, and 128.
| Optimization | Model | Batch size 32 | Batch size 64 | Batch size 128 | IV3 | MN | XN | RN | IV3 | MN | XN | RN | IV3 | MN | XN | RN |
| Adam | 96.26 | 96.94 | 90.94 | 79.06 | 94.30 | 95.95 | 96.32 | 77.26 | 96.29 | 96.86 | 96.34 | 79.47 | SGD | 94.21 | 93.20 | 92.18 | 96.87 | 94.30 | 91.34 | 92.70 | 96.85 | 96.29 | 93.46 | 92.76 | 96.72 | RMSProp | 96.45 | 96.96 | 92.76 | 76.06 | 96.42 | 96.93 | 90.33 | 77.16 | 96.52 | 96.90 | 92.96 | 78.57 | Nadam | 92.30 | 96.92 | 91.12 | 75.63 | 94.01 | 96.90 | 94.59 | 80.48 | 94.04 | 96.98 | 94.25 | 80.62 | Adadelta | 61.61 | 88.15 | 90.69 | 96.00 | 50.28 | 89.05 | 93.52 | 96.33 | 46.95 | 87.91 | 94.21 | 96.24 | Adagrad | 90.19 | 96.21 | 96.38 | 96.96 | 90.19 | 96.22 | 96.32 | 96.97 | 90.53 | 96.29 | 96.34 | 96.97 |
|
|