Research Article

Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform

Table 4

Test accuracy of batch sizes 32, 64, and 128.

Optimization
Model
Batch size 32Batch size 64Batch size 128
IV3MNXNRNIV3MNXNRNIV3MNXNRN

Adam96.2696.9490.9479.0694.3095.9596.3277.2696.2996.8696.3479.47
SGD94.2193.2092.1896.8794.3091.3492.7096.8596.2993.4692.7696.72
RMSProp96.4596.9692.7676.0696.4296.9390.3377.1696.5296.9092.9678.57
Nadam92.3096.9291.1275.6394.0196.9094.5980.4894.0496.9894.2580.62
Adadelta61.6188.1590.6996.0050.2889.0593.5296.3346.9587.9194.2196.24
Adagrad90.1996.2196.3896.9690.1996.2296.3296.9790.5396.2996.3496.97