Research Article
Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform
Table 5
Train loss of batch sizes 32, 64, and 128.
| Optimization | Model | Batch size 32 | Batch size 64 | Batch size 128 | IV3 | MN | XN | RN | IV3 | MN | XN | RN | IV3 | MN | XN | RN |
| Adam | 0.02 | 0.00 | 0.07 | 0.05 | 0.02 | 0.00 | 0.07 | 0.05 | 0.02 | 0.00 | 0.07 | 0.05 | SGD | 12.75 | 18.01 | 21.80 | 2.66 | 0.02 | 0.17 | 0.18 | 0.03 | 0.02 | 0.17 | 0.18 | 0.03 | RMSProp | 0.01 | 0.00 | 0.18 | 0.10 | 0.02 | 0.00 | 0.09 | 0.10 | 0.02 | 0.00 | 0.06 | 0.09 | Nadam | 0.36 | 0.00 | 0.03 | 0.04 | 0.35 | 0.00 | 0.03 | 0.04 | 0.24 | 0.00 | 0.03 | 0.04 | Adadelta | 1.15 | 0.49 | 0.34 | 0.06 | 1.24 | 0.48 | 0.32 | 0.05 | 1.26 | 0.50 | 0.31 | 0.05 | Adagrad | 0.33 | 0.07 | 0.07 | 0.01 | 0.33 | 0.07 | 0.07 | 0.01 | 0.32 | 0.07 | 0.07 | 0.01 |
|
|