Research Article

Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform

Table 5

Train loss of batch sizes 32, 64, and 128.

Optimization
Model
Batch size 32Batch size 64Batch size 128
IV3MNXNRNIV3MNXNRNIV3MNXNRN

Adam0.020.000.070.050.020.000.070.050.020.000.070.05
SGD12.7518.0121.802.660.020.170.180.030.020.170.180.03
RMSProp0.010.000.180.100.020.000.090.100.020.000.060.09
Nadam0.360.000.030.040.350.000.030.040.240.000.030.04
Adadelta1.150.490.340.061.240.480.320.051.260.500.310.05
Adagrad0.330.070.070.010.330.070.070.010.320.070.070.01