Research Article
Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform
Table 6
Test loss of batch sizes 32, 64, and 128.
| Optimization | Model | Batch size 32 | Batch size 64 | Batch size 128 | IV3 | MN | XN | RN | IV3 | MN | XN | RN | IV3 | MN | XN | RN |
| Adam | 3.28 | 0.34 | 104.48 | 183.74 | 27.65 | 0.21 | 3.99 | 182.01 | 2.44 | 0.50 | 3.79 | 250.94 | SGD | 7.92 | 15.81 | 14.42 | 1.06 | 37.65 | 15.30 | 13.57 | 1.30 | 2.44 | 14.83 | 13.88 | 1.44 | RMSProp | 1.83 | 0.11 | 13.88 | 291.95 | 2.30 | 0.18 | 110.69 | 373.63 | 2.72 | 0.24 | 160.91 | 455.04 | Nadam | 1.38 | 0.24 | 88.62 | 484.78 | 2.94 | 0.44 | 87.80 | 189.05 | 5.56 | 0.08 | 48.57 | 416.08 | Adadelta | 112.05 | 46.75 | 28.59 | 4.19 | 124.38 | 45.63 | 26.05 | 3.92 | 126.22 | 47.32 | 25.34 | 3.93 | Adagrad | 25.90 | 5.83 | 3.92 | 0.29 | 25.86 | 5.96 | 3.99 | 0.34 | 25.38 | 5.90 | 3.79 | 0.34 |
|
|