Research Article

Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform

Table 6

Test loss of batch sizes 32, 64, and 128.

Optimization
Model
Batch size 32Batch size 64Batch size 128
IV3MNXNRNIV3MNXNRNIV3MNXNRN

Adam3.280.34104.48183.7427.650.213.99182.012.440.503.79250.94
SGD7.9215.8114.421.0637.6515.3013.571.302.4414.8313.881.44
RMSProp1.830.1113.88291.952.300.18110.69373.632.720.24160.91455.04
Nadam1.380.2488.62484.782.940.4487.80189.055.560.0848.57416.08
Adadelta112.0546.7528.594.19124.3845.6326.053.92126.2247.3225.343.93
Adagrad25.905.833.920.2925.865.963.990.3425.385.903.790.34