Research Article

Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform

Table 7

Validation time of batch sizes 32, 64, and 128 for classifiers and optimizers.

Optimization
Model
Batch size 32Batch size 64Batch size 128
IV3MNXNRNIV3MNXNRNIV3MNXNRN

Adam34.1536.23128.9136.8235.1535.09310.3459.5843.3352.57132.3536.23
SGD33.9235.12155.8935.4438.9235.09124.8451.1443.3350.91304.6635.6
RMSProp35.8750.91135.5437.3537.8736.22132.8753.2134.6653.05129.4236.4
Nadam37.655.36187.1640.8539.636.58124.0956.8437.4955.93125.3940.26
Adadelta36.6551.23127.7369.6142.6545.51126.2751.77237.5751.44664.4171.11
Adagrad37.7952.42128.1389.9237.7936.84123.3259.5836.752.57123.4166.07