Research Article
Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform
Table 7
Validation time of batch sizes 32, 64, and 128 for classifiers and optimizers.
| Optimization | Model | Batch size 32 | Batch size 64 | Batch size 128 | IV3 | MN | XN | RN | IV3 | MN | XN | RN | IV3 | MN | XN | RN |
| Adam | 34.15 | 36.23 | 128.91 | 36.82 | 35.15 | 35.09 | 310.34 | 59.58 | 43.33 | 52.57 | 132.35 | 36.23 | SGD | 33.92 | 35.12 | 155.89 | 35.44 | 38.92 | 35.09 | 124.84 | 51.14 | 43.33 | 50.91 | 304.66 | 35.6 | RMSProp | 35.87 | 50.91 | 135.54 | 37.35 | 37.87 | 36.22 | 132.87 | 53.21 | 34.66 | 53.05 | 129.42 | 36.4 | Nadam | 37.6 | 55.36 | 187.16 | 40.85 | 39.6 | 36.58 | 124.09 | 56.84 | 37.49 | 55.93 | 125.39 | 40.26 | Adadelta | 36.65 | 51.23 | 127.73 | 69.61 | 42.65 | 45.51 | 126.27 | 51.77 | 237.57 | 51.44 | 664.41 | 71.11 | Adagrad | 37.79 | 52.42 | 128.13 | 89.92 | 37.79 | 36.84 | 123.32 | 59.58 | 36.7 | 52.57 | 123.41 | 66.07 |
|
|