Research Article
Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform
Table 8
Sensitivity of batch sizes 32, 64, and 128 for classifiers and optimizers.
| Optimization | Model | Batch size 32 | Batch size 64 | Batch size 128 | IV3 | MN | XN | RN | IV3 | MN | XN | RN | IV3 | MN | XN | RN |
| Adam | 95.98 | 93.87 | 93.52 | 89.96 | 96.1 | 96.26 | 92.44 | 90.83 | 95.9 | 95.84 | 94.96 | 89.38 | SGD | 94.56 | 95.56 | 91.59 | 93.56 | 95.3 | 96.10 | 94.42 | 93.6 | 94.46 | 95.7 | 91.92 | 93.5 | RMSProp | 95.95 | 96.53 | 89.81 | 96.02 | 95.85 | 96.45 | 95.32 | 96.08 | 95.75 | 96.49 | 95.12 | 95.82 | Nadam | 94.54 | 94.35 | 95.29 | 89.26 | 96.01 | 95.95 | 96.04 | 90.36 | 95.73 | 95.02 | 95.25 | 93.36 | Adadelta | 69.34 | 91.57 | 91.17 | 79.31 | 69.41 | 96.10 | 92.66 | 82.73 | 66.57 | 94.99 | 93.43 | 84.53 | Adagrad | 87.84 | 96.01 | 95.47 | 85.82 | 89.34 | 96.15 | 89.67 | 86.62 | 87.65 | 96.08 | 94.18 | 84.82 |
|
|