Research Article

Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform

Table 8

Sensitivity of batch sizes 32, 64, and 128 for classifiers and optimizers.

Optimization
Model
Batch size 32Batch size 64Batch size 128
IV3MNXNRNIV3MNXNRNIV3MNXNRN

Adam95.9893.8793.5289.9696.196.2692.4490.8395.995.8494.9689.38
SGD94.5695.5691.5993.5695.396.1094.4293.694.4695.791.9293.5
RMSProp95.9596.5389.8196.0295.8596.4595.3296.0895.7596.4995.1295.82
Nadam94.5494.3595.2989.2696.0195.9596.0490.3695.7395.0295.2593.36
Adadelta69.3491.5791.1779.3169.4196.1092.6682.7366.5794.9993.4384.53
Adagrad87.8496.0195.4785.8289.3496.1589.6786.6287.6596.0894.1884.82