Research Article

Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform

Table 9

Specificity of batch sizes 32, 64, and 128 for classifiers and optimizers.

Optimization
Model
Batch size 32Batch size 64Batch size 128
IV3MNXNRNIV3MNXNRNIV3MNXNRN

Adam92.3490.8791.4386.2395.6592.3688.5492.3895.3290.7489.4589.29
SGD89.6490.3494.2392.3794.4794.9590.6792.9393.6790.3486.6791.1
RMSProp93.8295.8189.6792.9395.8495.9892.2390.2894.9796.2888.2494.25
Nadam90.1294.4587.3491.195.4393.9393.4689.5394.3489.8689.7592.36
Adadelta52.3289.3283.9589.0265.2789.7289.8793.1756.9385.9586.8393.75
Adagrad77.9894.8791.3793.4787.9481.2389.1293.8386.2686.3690.4692.64