Research Article
Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform
Table 9
Specificity of batch sizes 32, 64, and 128 for classifiers and optimizers.
| Optimization | Model | Batch size 32 | Batch size 64 | Batch size 128 | IV3 | MN | XN | RN | IV3 | MN | XN | RN | IV3 | MN | XN | RN |
| Adam | 92.34 | 90.87 | 91.43 | 86.23 | 95.65 | 92.36 | 88.54 | 92.38 | 95.32 | 90.74 | 89.45 | 89.29 | SGD | 89.64 | 90.34 | 94.23 | 92.37 | 94.47 | 94.95 | 90.67 | 92.93 | 93.67 | 90.34 | 86.67 | 91.1 | RMSProp | 93.82 | 95.81 | 89.67 | 92.93 | 95.84 | 95.98 | 92.23 | 90.28 | 94.97 | 96.28 | 88.24 | 94.25 | Nadam | 90.12 | 94.45 | 87.34 | 91.1 | 95.43 | 93.93 | 93.46 | 89.53 | 94.34 | 89.86 | 89.75 | 92.36 | Adadelta | 52.32 | 89.32 | 83.95 | 89.02 | 65.27 | 89.72 | 89.87 | 93.17 | 56.93 | 85.95 | 86.83 | 93.75 | Adagrad | 77.98 | 94.87 | 91.37 | 93.47 | 87.94 | 81.23 | 89.12 | 93.83 | 86.26 | 86.36 | 90.46 | 92.64 |
|
|