Review Article
A Comparative Analysis of Fraudulent Recruitment Advertisement Detection Methods in the IoT Environment
Table 5
Experimental results on the unbalanced datasets.
| Category | Model | Unbalanced dataset-1 | Unbalanced dataset-2 | | | | | | | | |
| Traditional learning | RF | 0.910 | 0.919 | 0.896 | 0.905 | 0.928 | 0.946 | 0.864 | 0.896 | SVM | 0.896 | 0.898 | 0.885 | 0.890 | 0.924 | 0.932 | 0.865 | 0.892 | LR | 0.877 | 0.872 | 0.874 | 0.873 | 0.906 | 0.874 | 0.880 | 0.877 | NB | 0.830 | 0.824 | 0.830 | 0.826 | 0.832 | 0.781 | 0.826 | 0.796 | Traditional learning + feature extraction | RF+TF-IDF | 0.904 | 0.912 | 0.890 | 0.898 | 0.918 | 0.940 | 0.844 | 0.879 | SVM+TF-IDF | 0.911 | 0.915 | 0.901 | 0.906 | 0.936 | 0.950 | 0.882 | 0.909 | LR+TF-IDF | 0.882 | 0.885 | 0.870 | 0.877 | 0.904 | 0.912 | 0.830 | 0.860 | NB+TF-IDF | 0.836 | 0.834 | 0.824 | 0.828 | 0.861 | 0.855 | 0.761 | 0.791 | Deep learning | GRU | 0.865 | 0.861 | 0.857 | 0.857 | 0.912 | 0.893 | 0.868 | 0.879 | Bi-LSTM | 0.886 | 0.881 | 0.881 | 0.880 | 0.915 | 0.894 | 0.875 | 0.883 | TextCNN | 0.941 | 0.942 | 0.934 | 0.938 | 0.960 | 0.958 | 0.932 | 0.944 | Deep learning + pretraining | GRU+Word2Vec | 0.802 | 0.796 | 0.808 | 0.798 | 0.855 | 0.820 | 0.783 | 0.800 | GRU+GloVe | 0.808 | 0.804 | 0.797 | 0.799 | 0.859 | 0.814 | 0.787 | 0.799 | Bi-LSTM + Word2Vec | 0.889 | 0.884 | 0.884 | 0.884 | 0.918 | 0.896 | 0.885 | 0.889 | Bi-LSTM + GloVe | 0.854 | 0.848 | 0.855 | 0.851 | 0.901 | 0.895 | 0.825 | 0.853 | TextCNN + Word2Vec | 0.938 | 0.939 | 0.932 | 0.936 | 0.955 | 0.960 | 0.920 | 0.938 | TextCNN + GloVe | 0.932 | 0.937 | 0.922 | 0.928 | 0.949 | 0.958 | 0.906 | 0.928 | Category | Model | Unbalanced dataset-3 | Unbalanced dataset-4 | | | | | | | | | Traditional learning | RF | 0.944 | 0.963 | 0.824 | 0.875 | 0.977 | 0.985 | 0.768 | 0.842 | SVM | 0.940 | 0.941 | 0.821 | 0.867 | 0.974 | 0.984 | 0.733 | 0.811 | LR | 0.937 | 0.879 | 0.881 | 0.880 | 0.969 | 0.830 | 0.832 | 0.831 | NB | 0.853 | 0.738 | 0.840 | 0.769 | 0.868 | 0.613 | 0.827 | 0.646 | Traditional learning + feature extraction | RF+TF-IDF | 0.939 | 0.962 | 0.806 | 0.861 | 0.976 | 0.987 | 0.755 | 0.831 | SVM+TF-IDF | 0.954 | 0.960 | 0.861 | 0.901 | 0.980 | 0.984 | 0.799 | 0.867 | LR+TF-IDF | 0.923 | 0.920 | 0.771 | 0.822 | 0.965 | 0.938 | 0.656 | 0.724 | NB+TF-IDF | 0.890 | 0.891 | 0.657 | 0.705 | 0.955 | 0.961 | 0.541 | 0.564 | Deep learning | GRU | 0.947 | 0.918 | 0.861 | 0.885 | 0.973 | 0.875 | 0.833 | 0.850 | Bi-LSTM | 0.946 | 0.920 | 0.862 | 0.888 | 0.979 | 0.922 | 0.837 | 0.874 | TextCNN | 0.969 | 0.956 | 0.923 | 0.938 | 0.986 | 0.954 | 0.896 | 0.922 | Deep learning + pretraining | GRU+Word2Vec | 0.916 | 0.855 | 0.781 | 0.809 | 0.967 | 0.895 | 0.733 | 0.791 | GRU+GloVe | 0.923 | 0.867 | 0.791 | 0.791 | 0.969 | 0.885 | 0.775 | 0.820 | Bi-LSTM+Word2Vec | 0.947 | 0.908 | 0.869 | 0.887 | 0.973 | 0.905 | 0.802 | 0.845 | Bi-LSTM+GloVe | 0.932 | 0.902 | 0.807 | 0.845 | 0.972 | 0.920 | 0.758 | 0.817 | TextCNN+Word2Vec | 0.968 | 0.967 | 0.900 | 0.929 | 0.985 | 0.981 | 0.860 | 0.911 | TextCNN+GloVe | 0.949 | 0.958 | 0.906 | 0.928 | 0.962 | 0.963 | 0.879 | 0.915 |
|
|