Research Article
Evolution and Evaluation: Sarcasm Analysis for Twitter Data Using Sentiment Analysis
Table 2
Comparison with other work.
| Authors | Sarcasm dataset | Classifiers used | Accuracy gained | LR | SVM | RF | KNN | DT | NB | AB |
| [8] | Twitter | | | | | | | | DT: 71.05 NB: 75.18 RF: 77.94 AB: 76.06 LR: 32.03 | [13] | Twitter: general election | | | | | | | | SVM: 80 | [19] | Twitter | | | | | | | | NB: 57 LR: 80 RF: 80.5 | [12] | Facebook | | | | | | | | NB: 73.66 SVM: 88.3 | [1] | Twitter | | | | | | | | SVM: 79 LR: 80 | [20] | Twitter | | | | | | | | SVM: 77.9 KNN: 58 RF: 81 |
|
|
LR: Logistic regression, SVM: Support vector machine, RF: Random forest, KNN: K-nearest neighbor, DT: Decision tree, NB: Naïve Bayes, AB: AdaBoost.
|