Research Article
An Image-Based Deep Learning Approach with Improved DETR for Power Line Insulator Defect Detection
Table 2
Performance of contrastive models on CPLID.
| Model | Backbone | | | | Speed (ms) |
| RetinaNet | ResNet101 | 0.992 | 0.953 | 0.762 | 80.6 | RetinaNet | ResNet50 | 0.993 | 0.956 | 0.777 | 60.2 | YOLOv5x | CSPDarknet53 | 0.995 | 0.960 | 0.794 | 26.6 | YOLOv5l | CSPDarknet53 | 0.995 | 0.969 | 0.795 | 14.2 | YOLOv5m | CSPDarknet53 | 0.995 | 0.960 | 0.795 | 8.2 | TOOD | ResNet101 | 1.000 | 0.969 | 0.764 | 86.2 | TOOD | ResNet50 | 1.000 | 0.964 | 0.787 | 65.7 | Sparse R-CNN | ResNet101 | 1.000 | 0.981 | 0.758 | 86.9 | Sparse R-CNN | ResNet50 | 1.000 | 0.992 | 0.785 | 67.1 | DETR | ResNet101 | 1.000 | 0.965 | 0.752 | 63.3 | DETR | ResNet50 | 1.000 | 0.985 | 0.753 | 41.3 | DETR-Focal | ResNet101 | 1.000 | 0.974 | 0.769 | 63.3 | DETR-Focal | ResNet50 | 1.000 | 1.000 | 0.797 | 41.3 |
|
|