Research Article
Dynamic Multiscale Feature Fusion Method for Underwater Target Recognition
Table 2
Conventional underwater image target recognition accuracy and time.
| Method | Torpedo | Torpedowake | Submarine | Frogman | Bubble | AUV | mAP | Time |
| FISHnet | 0.5711 | 0.6477 | 0.9286 | 0.7553 | 0.6944 | 0.9197 | 0.7528 | 0.398 | SiamFPN | 0.4376 | 0.4163 | 0.9294 | 0.7302 | 0.6419 | 0.9283 | 0.6806 | 0.231 | SA-FPN | 0.4742 | 0.6372 | 0.8284 | 0.7307 | 0.7017 | 0.9300 | 0.7170 | 0.245 | Literature [33] | 0.6011 | 0.5627 | 0.7855 | 0.7614 | 0.7765 | 0.9056 | 0.7321 | 0.100 | Ours | 0.6715 | 0.5449 | 0.9573 | 0.7468 | 0.7645 | 0.8732 | 0.7597 | 0.223 |
|
|
Note: the bold value in the table indicates excellent indicators of each algorithm.
|