Research Article

A Robust and Lightweight Detector for Ship Target with Complex Background in SAR Image

Table 10

Performance comparison of SSDD with different algorithms.

MethodBackbonePrecision (%)Recall (%)AP (%)FLOPs (GFLOs)paramsRuntimes(ms)

Libra R-CNN [23]ResNet 101-FPN88.688.689.983.060.430.2
Cascade R-CNN [24]ResNet 101-FPN94.389.989.5110.487.938.8
Faster R-CNNResNet 101-FPN90.987.688.382.760.130.2
CR2A-Net [25]ResNet 101-FPN94.087.889.8112.088.667.2
DAPN [26]ResNet 101-FPN87.691.490.1117.263.834.5
RetinaNet [27]ResNet-101-FPN81.692.389.671.855.130.2
SSDSSD-VGG92.988.094.087.724.430.2
YOLOv3Darknet-5390.794.795.049.661.510.4
YOLOv4CSPDarknet-5393.694.096.145.364.312.9
YOLOv5CSPDarknet-5393.992.897.216.47.18.8
[22]Darknet-5395.194.594.850.665.816.4
FCOS [28]ResNet 101-FPN94.485.688.769.850.825.9
CenterNet [29]DAL-3493.394.593.525.920.221.5
CenterNet++ [30]DAL-3492.694.592.726.620.321.5
OurCSPDarknet-5398.197.199.211.31.95.1
Our(0.8 prune)CSPDarknet-5394.792.097.10.50.12.9