Research Article
A Robust and Lightweight Detector for Ship Target with Complex Background in SAR Image
Table 11
Performance comparison of different algorithms for HRSID.
| Method | Backbone | Precision (%) | Recall (%) | AP (%) | FLOPs (GFLOs) | params | Runtimes (ms) |
| Libra R-CNN [23] | ResNet 101-FPN | 83.1 | 77.9 | 77.5 | 182.6 | 60.4 | 57.6 | Cascade R-CNN [24] | ResNet 101-FPN | 89.9 | 79.3 | 79.2 | 209.7 | 87.9 | 64.7 | Faster R-CNN | ResNet 101-FPN | 88.8 | 77.5 | 78.2 | 181.9 | 60.1 | 56.1 | CR2A-Net [25] | ResNet 101-FPN | 88.5 | 78.9 | 80.9 | 212.5 | 88.6 | 77.3 | DAPN [26] | ResNet 101-FPN | 88.9 | 77.6 | 79.8 | 266.1 | 63.8 | 74.9 | RetinaNet [27] | ResNet-101-FPN | 69.8 | 83.8 | 82.5 | 175.4 | 55.1 | 55.0 | SSD512 | SSD-VGG | 87.4 | 85.3 | 88.8 | 87.7 | 24.4 | 44.8 | YOLOv3 | Darknet-53 | 90.6 | 78.2 | 87.2 | 121.0 | 61.5 | 26.0 | YOLOv4 | CSPDarknet-53 | 90.6 | 84.0 | 90.1 | 110.5 | 64.3 | 22.4 | YOLOv5 | CSPDarknet-53 | 91.5 | 85.0 | 92.8 | 16.4 | 7.1 | 9.8 | [22] | Darknet-53 | 92.7 | 88.1 | 90.3 | 123.5 | 65.8 | 37.3 | FCOS [28] | ResNet 101-FPN | 91.9 | 79.5 | 86.6 | 170.6 | 50.8 | 50.9 | CenterNet [29] | DAL-34 | 81.8 | 87.4 | 86.3 | 63.3 | 20.2 | 55.0 | CenterNet++ [30] | DAL-34 | 82.2 | 87.3 | 86.3 | 64.9 | 20.3 | 54.5 | Our | CSPDarknet-53 | 94.2 | 91.5 | 95.7 | 11.3 | 1.9 | 5.1 | Our (0.7 prune) | CSPDarknet-53 | 92.1 | 85.1 | 92.4 | 1.9 | 0.2 | 2.9 |
|
|