Research Article

A Deep Domain-Adversarial Transfer Fault Diagnosis Method for Rolling Bearing Based on Ensemble Empirical Mode Decomposition

Table 1

A list of acronyms used in this paper.

AcronymFull formAcronymFull form

EMBRNDNMDDomain adversarial-based rolling bearing fault transfer diagnosis modelTLTransfer learning
EMDEmpirical mode decompositionCNNConvolutional neural networks
EEMDEnsemble empirical mode decompositionResNetResidual network
EEMD-TFFGTime-frequency feature graphMMDMaximum mean discrepancy
MBRNMulti-branch ResNetMK-MMDMulti-core maximum mean difference
RNBResNet moduleGANGenerative adversarial network
IMFIntrinsic mode functionDANNDomain-adversarial neural network
IMFsIntrinsic mode functionsGRLGradient reversal layer
HHTHilbert-Huang transformt-SNEt-Distributed stochastic neighbor embedding
HESHilbert envelope SpectrumTCATransfer component analysis
SVMSupport vector machineJDAJoint distribution adaptation
PCAPrincipal component analysisCWRUCase Western Reserve University
ELMExtreme learning machineMFS-RDSMechanical fault diagnosis experiment platform