Research Article
Fault Location Method in Nonsolid-Earthed Network Based on Spatial Domain Image Fusion and Convolution Neural Network
Table 2
Parameters of fault location model based on GAF and CNN.
| Layer name | Structural parameters | Output size |
| Input layer | | | Convolution lay | , , “Valid” | | Activation layer 1 | ReLu | | Normalization layer 1 | Local response norm | | Pooling layer 1 | Max pooling | | Convolution layer 2 | 2 groups of 128 , , “Same” | | Activation layer 2 | ReLu | | Normalization layer 2 | Local response norm | | Pooling layer 2 | Max pooling | | Convolution layer 3 | , , “Same” | | Activation layer 3 | ReLu | | Convolution layer 4 | 2 groups of 192 , , “Same” | | Activation layer 4 | ReLu | | Convolution layer 5 | 2 groups of 1, , “Same” | | Activation layer 5 | ReLu | | Fully connected layer | 1 neuron | | Regression layer | Distance-to-fault | 1 |
|
|