Research Article

Predicting Multidimensional Environmental Factor Trends in Greenhouse Microclimates Using a Hybrid Ensemble Approach

Table 1

Prediction errors of the different models.

MethodMetricCO2 concentrationAtmospheric pressureLight intensityHumidityTemperature

RNNMSE628.711978.899487481.8971.8580.982
RMSE25.07431.287698.1991.3630.991
0.9730.9950.9510.9910.961
MAE16.12522.015328.4860.9050.785
MAPE2.253%0.023%——1.811%8.955%
SMAPE2.216%0.023%——1.800%8.710%

CNNMSE592.845957.548498524.8861.7840.799
RMSE24.34830.944706.0631.3360.894
0.9740.9960.9500.9910.970
MAE13.95321.783330.1530.8880.697
MAPE2.107%0.022%——1.799%8.588%
SMAPE2.098%0.022%——1.782%8.220%

LSTMMSE607.908945.915471187.0781.6670.592
RMSE24.65630.756686.4311.2910.769
0.9750.9960.9520.9900.975
MAE14.24221.589325.5140.8460.565
MAPE2.167%0.021%——1.780%7.979%
SMAPE2.180%0.021%——1.743%7.444%

BiLSTMMSE579.833696.083414738.0121.3790.468
RMSE24.07926.383644.0021.1750.684
0.9740.9970.9530.9920.986
MAE13.69617.867304.9430.7400.474
MAPE2.077%0.018%——1.459%6.259%
SMAPE2.056%0.018%——1.460%5.861%

InformerMSE540.253589.742339760.3691.1480.487
RMSE23.24324.285582.8901.0710.698
0.9750.9970.9510.9930.986
MAE13.14816.369314.2020.7190.492
MAPE2.061%0.017%——1.397%6.474%
SMAPE2.065%0.017%——1.408%5.948%

CEEMDAN-InformerMSE358.043242.237100222.7670.6970.249
RMSE18.92215.564316.5800.8350.499
0.9840.9980.9860.9960.991
MAE11.87411.098203.0450.6170.346
MAPE1.795%0.011%——1.180%4.250%
SMAPE1.795%0.011%——1.185%4.108%