Research Article

Predicting Multidimensional Environmental Factor Trends in Greenhouse Microclimates Using a Hybrid Ensemble Approach

Table 2

Prediction errors of combined EMD models.

MethodMetricCO2 concentrationAtmospheric pressureLight intensityHumidityTemperature

EMD-RNNMSE569.583792.121395241.8521.5620.703
RMSE23.86628.145628.6831.2500.838
0.9740.9960.9580.9910.970
MAE13.62420.050305.8220.8710.644
MAPE2.108%0.021%——1.735%8.158%
SMAPE2.147%0.021%——1.721%7.978%

EMD-CNNMSE561.451753.845338558.2421.4900.533
RMSE23.69527.456581.8581.2200.730
0.9740.9960.9590.9910.976
MAE13.19319.215294.8580.8180.542
MAPE2.087%0.020%——1.719%7.853%
SMAPE2.072%0.020%——1.687%7.414%

EMD-LSTMMSE553.256786.858347852.1491.3750.482
RMSE23.52128.051589.7901.1730.694
0.9760.9960.9600.9920.978
MAE13.18819.790298.1250.7710.509
MAPE2.013%0.019%——1.694%7.104%
SMAPE2.021%0.019%——1.657%6.916%

EMD-BiLSTMMSE532.458518.857321129.8601.1450.405
RMSE23.07522.778566.6831.0700.636
0.9760.9970.9640.9930.986
MAE13.10316.154277.8540.7080.448
MAPE1.988%0.017%——1.417%5.548%
SMAPE1.995%0.017%——1.410%5.124%

CEEMDAN-InformerMSE358.043242.237100222.7670.6970.249
RMSE18.92215.564316.5800.8350.499
0.9840.9980.9860.9960.991
MAE11.87411.098203.0450.6170.346
MAPE1.795%0.011%——1.180%4.250%
SMAPE1.795%0.011%——1.185%4.108%