Research Article

Predicting Multidimensional Environmental Factor Trends in Greenhouse Microclimates Using a Hybrid Ensemble Approach

Table 3

Prediction errors of combined CEEMDAN models.

MethodMetricCO2 concentrationAtmospheric pressureLight intensityHumidityTemperature

CEEMDAN-RNNMSE526.682708.483317257.4961.5060.618
RMSE22.95026.617563.2561.2270.786
0.9750.9960.9610.9910.974
MAE12.98719.175283.9620.8530.597
MAPE2.077%0.020%——1.718%7.483%
SMAPE2.094%0.020%——1.685%7.249%

CEEMDAN-CNNMSE501.896674.359293723.3871.4790.473
RMSE22.40325.968541.9631.2160.688
0.9760.9960.9640.9910.978
MAE12.73118.046271.8950.8070.491
MAPE1.896%0.019%——1.687%7.175%
SMAPE1.893%0.019%——1.680%6.874%

CEEMDAN-LSTMMSE514.781667.048246108.6391.1840.422
RMSE22.68925.827496.0931.0880.649
0.9770.9970.9690.9920.981
MAE12.89017.337247.9830.7430.468
MAPE1.976%0.017%——1.581%6.755%
SMAPE1.967%0.017%——1.593%6.431%

CEEMDAN-BiLSTMMSE491.188429.587278586.6241.0380.380
RMSE22.16320.726527.8131.0190.616
0.9790.9970.9700.9940.986
MAE12.53114.986258.6150.6870.423
MAPE1.890%0.015%——1.378%5.132%
SMAPE1.918%0.015%——1.364%4.897%

CNN-LSTMMSE334.845294.584182547.5520.8670.314
RMSE18.29917.163427.2560.9310.560
0.9860.9970.9780.9950.988
MAE11.81612.783227.2530.6460.391
MAPE1.791%0.013%——1.252%4.876%
SMAPE1.792%0.013%——1.258%4.624%

CEEMDAN-InformerMSE358.043242.237100222.7670.6970.249
RMSE18.92215.564316.5800.8350.499
0.9840.9980.9860.9960.991
MAE11.87411.098203.0450.6170.346
MAPE1.795%0.011%——1.180%4.250%
SMAPE1.795%0.011%——1.185%4.108%