Research Article

Normalizing Flow-Based Industrial Complex Background Anomaly Detection

Table 2

Anomaly detection performance of AUROC (%) on the BTAD dataset.

CategoriesAE MSEAE MSE + SSIMVT-ADL [20]CSA-Flow (ours)

049539999.61 (0.62%)
192969487.20 (−9.17%)
295897799.93 (5.19%)
Average78.6779.3390.0095.58 (6.20%)

Note: We compared CSA-Flow with convolutional autoencoders trained with MSE-loss and MSE + SSIM loss. Bold values denote the best result in the category.