Research Article
A Model for Qur’anic Sign Language Recognition Based on Deep Learning Algorithms
Table 6
QSLRS-CNN accuracy on the test original data before applying sampling for 200 epochs.
| Class name | Number of samples in the test data | Number of samples correctly classified | Accuracy |
| Alif | 327 | 323 | 98.78% | Ha | 312 | 307 | 98.40% | Ra | 352 | 352 | 100.00% | Sin | 323 | 315 | 97.52% | Sad | 364 | 353 | 96.98% | Tah | 379 | 370 | 97.63% | Ayn | 427 | 420 | 98.36% | Qaf | 348 | 331 | 95.11% | Kaf | 341 | 320 | 93.84% | Lam | 366 | 355 | 96.99% | Mim | 368 | 353 | 95.92% | Nun | 369 | 357 | 96.75% | Haa | 304 | 295 | 97.04% | Ya | 326 | 323 | 99.08% |
|
|