Research Article
A Model for Qur’anic Sign Language Recognition Based on Deep Learning Algorithms
Table 8
QSLRS-CNN accuracy on the test data after resampled applying SMOTE for 200 epochs.
| Class name | Precision | Recall | -score | Number of samples in the test data | Number of samples correctly classified | Accuracy |
| Alif | 1.00 | 1.00 | 1.00 | 390 | 389 | 99.74% | Ha | 1.00 | 0.98 | 0.99 | 392 | 385 | 98.21% | Ra | 0.98 | 1.00 | 0.99 | 419 | 418 | 99.76% | Sin | 0.98 | 0.98 | 0.98 | 434 | 427 | 98.39% | Sad | 0.97 | 0.98 | 0.98 | 433 | 424 | 97.92% | Tah | 1.00 | 0.99 | 0.99 | 459 | 453 | 98.69% | Ayn | 0.97 | 0.98 | 0.97 | 401 | 392 | 97.76% | Qaf | 0.93 | 0.98 | 0.95 | 443 | 432 | 97.52% | Kaf | 0.95 | 0.94 | 0.94 | 423 | 402 | 95.04% | Lam | 0.98 | 0.93 | 0.95 | 483 | 454 | 94.00% | Mim | 0.96 | 0.97 | 0.97 | 421 | 409 | 97.15% | Nun | 0.97 | 0.97 | 0.97 | 424 | 411 | 96.93% | Haa | 0.99 | 0.98 | 0.98 | 399 | 394 | 98.75% | Ya | 0.99 | 0.98 | 0.99 | 399 | 396 | 99.25% |
|
|