Research Article
Wrist EMG Monitoring Using Neural Networks Techniques
Table 1
Features of the BP-ANN model.
| | Feature | Description | References |
| | Topology | MLP | [23] | | Inputs | Vinp | — | | Outputs | Vout | — | | Hidden layer and neuron | one layer with 25 neurons | [24] | | Activation function (input-hidden-output) | Fiden–Ftanh–Ftanh | [25] | | Training algorithm | Extended back-propagation | — | | Learning parameters | MSE simple | [21] | | Cost function | MSE simple | — | | Weight update | Batch | [22] | | Weight initialization | Haykin heuristic | [26] | | Convergence criteria | Epochs (1,000–200,000) | — |
|
|