Research Article

Automatic Seizure Detection Using Multi-Input Deep Feature Learning Networks for EEG Signals

Table 3

Layers of the designed network.

Time domainTF domain
Layer infoOutput sizeLayer infoOutput size

Input(1,280, 23)(65, 21, 23)

C11/C21Conv1D(3) × 16(1,278, 16)Conv2D(3, 1) × 16(63, 21, 16)
ReLU(1,278, 16)ReLU(63, 21, 16)
BatchNor(1,278, 16)BatchNor(63, 21, 16)
MaxP, s:2(639, 16)MaxP(2, 1), s:2(31, 21, 16)

C12/C22Conv1D(3) × 32(637, 32)Conv2D(3, 1) × 32(29, 21, 32)
ReLU(637, 32)ReLU(29, 21, 32)
BatchNor(637, 32)BatchNor(29, 21, 32)
MaxP, s:2(318, 32)MaxP(2, 1), s:2(14, 21, 32)

C13/C23Conv1D(3) × 64(316, 64)Conv2D(3, 1) × 64(12, 21, 64)
ReLU(316, 64)ReLU(12, 21, 64)
BatchNor(316, 64)BatchNor(12, 21, 64)
MaxP, s:2(158, 64)MaxP(2, 1), s:2(6, 21, 64)
Reshape(126, 64)

Concatenate(284, 64)
BLSTM 1(284, 40)
BLSTM 2(284, 40)
Flatten11,360
Dropout11,360
Dense128
Dense1